
A new model selection approach for the ELM

network using metaheuristic optimization

Ananda L. Freire and Guilherme A. Barreto ∗

Federal University of Ceará (UFC), Department of Teleinformatics Engineering (DETI)

Av. Mister Hull, S/N - Center of Technology, Campus of Pici, Fortaleza, Ceará, Brazil

Abstract. We propose a novel approach for architecture selection

and hidden neurons excitability improvement for the Extreme Learning

Machine (ELM). Named Adaptive Number of Hidden Neurons Approach

(ANHNA), the proposed approach relies on a new general encoding scheme

of the solution vector that automatically estimates the number of hidden

neurons and adjust their activation function parameters (slopes and bi-

ases). Due to its general nature, ANHNA’s encoding scheme can be used

by any metaheuristic algorithm for continuous optimization. Computer ex-

periments were carried out using Differential Evolution (DE) and Particle

Swarm Optimization (PSO) metaheuristics, with promising results being

achieved by the proposed method in benchmarking regression problems.

1 Introduction

Single hidden layer feedforward networks work as universal approximator with
any bounded non-linear piecewise continuous functions for additive nodes [1].
Among them, the Extreme Learning Machine (ELM) has become very popular
due to its fast training speed by setting randomly the hidden nodes weights
and biases. This configuration results in a linear model for the network output
weights, which are then analytically determined by finding a least-square solution
[2]. Although ELM offers good generalization performance, the random selection
of input-to-hidden-layer weights (input weights, for short) may produce a set of
non-optimal input weights and biases, which might suffer from overfitting [1].

To avoid that, during the past recent years, metaheuristic optimization al-
gorithms have been used as global searching methods for finding suitable input
weight values. For instance, the Evolutionary ELM [3] uses the Differential
Evolution (DE) algorithm [4] to search for optimal input weights. Hidden-to-
output-layer weights are estimated as the usual ELM. The Self Adaptive Evolu-
tionary ELM [1] is similar to the E-ELM, although it allows automatic selection
of different trial vector generation strategies and control parameters. In [5], the
ELM network is combined with an improved Particle Swarm Optimization [6]
to optimize the input weights and biases. Another method is the Group Search
Optimization ELM [7] that also aims at optimizing the input weights and biases.

It should be pointed out, however, that none of the aforementioned strate-
gies were designed to automatically determine the optimal number of hidden

∗This work was supported by CAPES, an entity of the Brazilian government dedicated to
the scientific and technological development.

619

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

neurons. In other words, in all of them the number of hidden neurons is spe-
cified beforehand. Furthermore, they do not explore the possibility of adapting
the neurons’ excitability parameters (i.e. the slope and bias of their activation
functions). Tuning of those parameters are related to the intrinsic plasticity of
a neuron cell [8] and can result in better generalization performances [9, 10].

From the exposed, we introduce a new encoding scheme for the solution
vector of a given metaheuristic optimization algorithm that allows automatic es-
timation of the number of hidden neurons and their activation function parame-
ter values. The proposed scheme, named Automatic Number of Hidden Neurons

Approach (ANHNA), is very general and can be used by any metaheuristic al-
gorithm for continuous optimization. Computer experiments using Differential
Evolution (DE) and Particle Swarm Optimization (PSO) metaheuristics demons-
trate the feasibility of the proposed approach.

2 Algorithms

Extreme Learning Machine (ELM) is a two layer network with random
and fixed weights matrix on the hidden layer, W ∈ R

p×q, where p is the num-
ber of input units and q the number of the hidden ones [2]. The output of
the hidden layer is h(k + 1) = φ

(
WT (k)u(k)

)
, where u(k) ∈ R

p is the cur-
rent input vector and φ is a logistic activation function, and the j-th network
output is yj(k + 1) =

∑q

i=1 w
out
ji (k)hi(k). For training, all inputs from the trai-

ning sequence ((u(k),d(k)), k = 1...N) are presented to the network and the
corresponding network states (h(k),d(k)) are collected (harvested) in respective
matrices, where d(k) is the desired output. The calculation of the output weight
matrix Wout is accomplished by a linear regression: Wout = H†D̃, where H† is
the Moore-Penrose generalized inverse of the hidden layer output matrix H.

Batch Intrinsic Plasticity (BIP) is an unsupervised learning rule that adapts
bias (bi) and slope (ai) of the neurons’ activation function, tuning them into more
suitable regimes, maximizing information transmission and acting as a feature
regularizer [9]. It is done in a way that the desired exponential distribution
fdes for the neurons activation hi(k) = (1 + exp(−aixi(k) − bi))

−1 is realized.
For each hidden neuron, all the arriving synaptic sum xi = wT

i U is collected,
where U = (u(1), ...,u(N)). Then random targets tfdes = (t1, ..., tN)T , from
the desired output distribution, and the collected stimuli are drawn in ascending
order. The model Φ(xi) = (xT

i , (1, ...1)
T) is built so we can calculate (ai, bi)

T =
(Φ(xi)

TΦ(xi)+λI)−1Φ(xi)
T f−1(tfdes), where f

−1 is the inverse logistic function,
λ > 0 is the regularization parameter and I ∈ R

q×q is an identity matrix [9].

Differential Evolution (DE) aims at evolving a population of NP chromo-
somes (Ci ∈ R

d, i = 1, ..., NP) towards the global optimum and the initial po-
pulation is chosen randomly (Ci(0) ∼ U(Cmin,Cmax)). The mutation is applied
first, producing a trial vector, Vi for each chromosome of the g-th population:

Vi(g) = Ci1(g) + β(Ci2(g)−Ci3(g)), (1)

620

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

where β ∈ (0,∞) is the scale factor that controls the amplification of the diffe-
rential variation [4]. From the several approaches that can be used for mutation,
we adopted the following one: the chromosomesCi2(g) and Ci3(g) are randomly
chosen with i1 6= i2 6= i3, and Ci1(g) is the individual with the best fitness.

Then, the DE crossover operator implements a discrete recombination of
Vi(g) and Ci(g) to produce the offspring C′

i(g). For each j-th component:

C′

i,j(g) =

{
Vi,j(g), if U(0, 1) < CR

Ci,j(g), otherwise.
(2)

As suggested in [11], the crossover rate CR adopted in this work will decrease
linearly with the generations from CRmax = 1 to CRmin = 0.5 following this

rule: CR = CRmin+(CRmax−CRmin)
(

MAXGEN−g

MAXGEN

)
, whereMAXGEN is the

maximum number of generations possible. Such tuning of CR helps to explore
the search space exhaustively at the beginning, but adjust the movements of
trial solutions finely during the later stages of search, so that they can explore
the interior of a relatively small space in which the suspected global optimum
lies [11]. Finally, the selection of chromosomes for the next generation:

Ci(g + 1) =

{
C′

i(g), if f(C′
i(g)) < f(Ci(g))

Ci(g), otherwise
(3)

where f(.) is the objective function to be minimized.

Particle Swarm Optimization (PSO) is a population-based search algo-
rithm based on the simulation of the social behavior of birds within a flock.
A population of chromosomes, Ci ∈ R

d, is initialized with random positions
(Ci(0) ∼ U(Cmin,Cmax)) and random velocities vi. Every chromosome is de-
fined within the context of a neighborhood k that comprises itself and some other
particles in the population. It may be the entire swarm (global PSO) or adopt
a social network topology which define smaller neighborhoods (local PSO). In
this work, for the local approach, we adopted the ring structure, where each
individual communicates with its immediate adjacent neighbors.

At each generation, the vectors of best historical individual position, pi ∈ R
d,

and the best historical position of the neighborhood k, pki ∈ R
d, are stored. The

difference between pki and the i-th individual current position is stochastically
added to its current velocity, causing the trajectory to oscillate around that best
position. The velocity equation update is shown below:

vij(g + 1) = χ[vij(g) + φ1ǫ1(pij(g)− Cij(g)) + φ2ǫ2(pkij(g)− Cij(g))] (4)

where χ is the constriction factor, φ1 and φ2 are positive constants called ac-
celeration coefficients and ǫ1 and ǫ2 are independent random numbers uniquely
generated at every update for each individual element [6]. The i-th chromosome
is updated as follows:

Ci(g + 1) = Ci(g) + vi(g + 1). (5)

621

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Adaptive Number of Hidden Neurons Approach (ANHNA) - has as its
core an encoding for chromosomes which optimize, simultaneously, the number
of hidden neurons and their activation function parameters. Inspired by [11], the
chromosome is a vector of real numbers of dimension (Qmax +Qmax + Qmax),
whereQmax is the maximum number of hidden neurons. The firstQmax elements
range from 0 to 1, each of which controls whether the corresponding set of
(ai,j , bi,j) is activated or not. The following Qmax elements are the activation
functions’ slope values (ai,j) and the remaining are their respective bias (bi,j).
For example, the i-th chromosome is presented below:

−→
C i(g) = Ti,1 Ti,2 ... Ti,Qmax

ai,1 ... ai,Qmax
bi,1 ... bi,Qmax

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Activation Threshold Slope Bias

The activation thresholds Ti,j behave like control genes, selecting the actual
number of hidden neurons, q, accordingly with this rule: if Ti,j ≥ 0.5 then the
j-th hidden neuron (ai,j ,bi,j) is active, otherwise, this neuron does not exist to
the network. Besides, some precautions must be taken at the beginning of each
population (parents and offspring as well, in DE case). First, check if at least
the minimum number of hidden neurons, Qmin, are active in every chromosome.
For those that do not comply with this rule, in each of them, choose randomly
Qmin activation thresholds where Ti(g) ∼ U(0.5, 1). Second and last rule, after
every chromosome update, the slope values ai will be replaced for their absolute
values. The Algorithm 1 presents a pseudo-code for ANHNA method.

Algorithm 1 ANHNA Pseudocode {Qmin, Qmax}

1: Initialize the parameters from DE or PSO

2: Initialize population C(0), where T(0) and a(0) ∼ U(0, 1) and b(0) ∼ U(−1, 1)

3: Check activation thresholds

4: while g < MAXGEN do

5: for each chromosome, Ci(g) do

6: Train and Test an ELM ⊲ with qi active hidden neurons and their (ai,bi)

7: Evaluate f(Ci) ⊲ fitness objective is the RMSE from ELM’s test

8: if DE is chosen then

9: Mutation (Eq. 1)

10: Check activation thresholds and |ai|
11: Crossover (Eq. 2) and Selection (Eq. 3) → Ci(g + 1)

12: end if

13: end for

14: if PSO is chosen then

15: for each chromosome, Ci(g) do

16: Set pi and pk
i

⊲ personal and neighborhood best positions

17: Update velocity (Eq. 4) and position (Eq. 5)

18: Check activation thresholds and |ai|
19: end for

20: end if

21: end while

22: return ELM with smaller RMSE in the last generation.

622

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

3 Results

The performance of ANHNA/DE, ANHNA/global-PSO, ANHNA/local-PSO,
traditional ELM and ELM with BIP are compared on the regression of 4 real
world datasets acquired from the UCI1 and StatLib2 databases. The autompg,
that concerns city-cycle fuel consumption in miles per gallon; Boston housing,
which involves the task of predicting housing values in areas of Boston; machine

CPU, that concerns the instance-based prediction of relative CPU performance;
and bodyfat, that estimates the percentage of body fat determined by underwater
weighing and various body circumference measurements.

The input data was normalized between [−0.9, 0.9] and the output data
[0.1, 0.9]. Each set was divided into training and test independent sets, with
an amount of (training/test) samples: for autompg (273/118), Boston housing

(354/152), machine CPU (143/63) and bodyfat (176/76).
The ANHNA method’s parameters were configured as Qmax = 100 and

Qmin = 10. For the DE algorithm, β = 0.5, NP = 100 and MAXIGEN = 300.
For PSO, as suggested in [6], φ1 = φ2 = 2.05 and χ = 0.72984, besides a
NP = 50 and MAXIGEN = 150. Considering the ELM networks, all activa-
tion functions are hyperbolic tangent and, for those whose excitability are not
changed, bias = 1. All implementations were executed with MATLAB, where,
for each dataset, 50 independent runs were executed with all methods described
above. Also, the number of hidden neurons for traditional ELM and ELM/BIP
is chosen from the biggest value found after those 50 runs of every ANHNAs.

Tab. 1: Comparison of the mean RMSE and the median q hidden neurons.
Autompg Machine CPU

Train Test q Train Test q

ANHNA/DE 0.0479±0.0014 0.0489±0.0005 56±3.78 0.0171±0.0044 0.0329±0.0045 42±3.56

ANHNA/g-PSO 0.0483±0.0013 0.0498±0.0005 53±3.96 0.0149±0.0007 0.0405±0.0084 42±4.33

ANHNA/l-PSO 0.0482±0.0014 0.0497±0.0006 53±4.12 0.0149±0.0006 0.0419±0.0059 41±3.72

ELM 0.0461±0.001 0.0563±0.0020 64 0.0133±0.0003 0.4909±0.2959 53

ELM/BIP 0.0477±0.0012 0.0553±0.0027 64 0.0132±0.0005 0.1791±0.0840 53

Bodyfat Boston Housing

Train Test q Train Test q

ANHNA/DE 0.0123±0.0009 0.0148±0.0009 51±6.01 0.0341±0.0024 0.0385±0.0014 59±4.41

ANHNA/g-PSO 0.0130±0.0013 0.0155±0.0004 48±5.72 0.0356±0.0022 0.0405±0.0014 57±4.79

ANHNA/l-PSO 0.0129±0.0014 0.0156±0.0005 51±5.13 0.0345±0.0025 0.0398±0.0017 59±4.80

ELM 0.0124±0.0010 0.0417±0.0175 64 0.0383±0.0027 0.0542±0.0053 71

ELM/BIP 0.0230±0.0027 0.0608±0.0178 64 0.0373±0.0030 0.0523±0.0041 71

In Tab. 1, for each dataset, the mean training and testing RMSE and its
standard deviation are shown, as well as the median number of hidden neurons
and its standard deviation. From those results, it may be observed that ELM
and ELM/BIP has the best training performance in half of the sets, however,
ANHNA methods show better generalization potentiality with less neurons than

1http://archive.ics.uci.edu/ml/index.html
2http://lib.stat.cmu.edu/index.php

623

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

the traditional ELM and the improved ELM/BIP. The ANHNA/DE, specifically,
has shown the best results both in training and testing in most of the datasets.

4 Conclusion

This work presented a hybrid method based on metaheuristics for optimizing
the ELM network, where the number of hidden neurons and their excitability
capacity are improved in one single evolutionary process. It is build up with
a new chromosome encoding within a basic DE or PSO algorithms altered by
few improvements and general parameters values, which are suggested in the
literature. From this basic setup, we achieved better generalization capacity
and network size selection at once in real world regression problems. In addition,
ANHNA demonstrates that is possible to improve ELM’s performance without
resorting to the optimization of input weights and biases, whose randomness is
the main characteristic of the ELM network.

As for future work, we aim at evaluating ANHNA’s performances in the
presence of outliers by embedding automatic robust statistics tools directly into
the encoding of the solution vector. Further studies on the impact of the meta-
heuristics’ choice of strategies and control parameters are also being executed.

References

[1] J. Cao, Z. Lin, and G.-B. Huang. Self-adaptive evolutionary extreme learning machine.
Neural Processing Letters, 36(3):285 – 305, 2012.

[2] G.-B. Huang, D. Wang, and Y. Lan. Extreme learning machines: a survey. International
Journal of Machine Learning and Cybernetics, 2(2):107 – 122, 2011.

[3] Qin-Yu Zhu, A.K. Qin, P.N. Suganthan, and Guang-Bin Huang. Evolutionary extreme
learning machine. Pattern Recognition, 38(10):1759 – 1763, 2005.

[4] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 1997.

[5] F. Han, H.-F. Yao, and Q.-H. Ling. An improved evolutionary extreme learning machine
based on particle swarm optimization. Neurocomputing, 116:87 – 93, 2013.

[6] D. Bratton and J. Kennedy. Defining a standard for particle swarm optimization. In
Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 120 – 127, 2007.

[7] D. N G Silva, L. D S Pacifico, and T.B. Ludermir. An evolutionary extreme learning
machine based on group search optimization. In 2011 IEEE Congress on Evolutionary
Computation (CEC), pages 574 – 580, 2011.

[8] J. Triesch. A gradient rule for the plasticity of a neurons intrinsic excitability. In Int.
Conf. on Artificial Neural Networks, page 6579, 2005.

[9] K. Neumann and J. Steil. Batch intrinsic plasticity for extreme learning machines. In
Artificial Neural Networks and Machine Learning - ICANN, pages 339–346. 2011.

[10] K. Neumann and J. Steil. Optimizing extreme learning machines via ridge regression
and batch intrinsic plasticity. Neurocomputing, 102:23 – 30, February 2013. Advances in
Extreme Learning Machines (ELM 2011).

[11] S. Das, A. Abraham, and A. Konar. Metaheuristic Clustering. Studies in Computational
Intelligence, Vol. 178. Springer, 2009.

624

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

