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Abstract. The purpose of this paper is to investigate a new quantum
learning algorithm for classical weightless neural networks. The learning
algorithm creates a superposition of all possible neural network configura-
tions for a given architecture. The performance of the network over the
training set is stored entangled with neural configuration and quantum
search is performed to amplify the probability amplitude of the network
with desired performance.

1 Introduction

Weightless neural networks [1] were proposed as pattern recognition systems.
In general, learning algorithms for weightless neural networks are heuristics and
there is no guarantee of convergence . Some algorithms perform the learning
task with a single presentation of the training set. Here we denote these type
of algorithms as single shot learning algorithms. For instance, it is possible to
train a GSN [2] network with a single shot learning algorithm [3].

The objective of this paper is to present a quantum learning algorithm for
classical weightless neural networks. The learning algorithm creates a superpo-
sition of all possible neural network configurations for a given architecture. The
performance of the network over the training set is stored with neural configu-
ration and quantum search is performed to amplify the probability amplitude of
the network with desired performance.

Single shot learning algorithms provide fast learning capacities to Weightless
Neural Networks (WNNs). However, the final neural network depends on pre-
sentation order of the patterns in the training set. In this paper, we propose
a single shot learning algorithm for weightless neural networks that performs a
global search in the space of parameters. It does not depend on pattern presen-
tation order.

The remainder of this paper is divided into 4 sections. Section 2 presents the
concept of weightless neural network. Section 3 presents concepts from quantum
computation. Section 4 presents the main result of this work, the quantum single
shot learning algorithm for WNNs. Finally, section 5 is the conclusion.

∗This work is supported by research grants from CNPq, CAPES and FACEPE (Brazilian
research agencies).
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2 Weightless neural networks

The first weightless neuron proposed was the RAM neuron [1]. A RAM neuron
is a self adaptive logic circuit. A n input RAM neuron has a memory C with 2n

memory positions. If the neuron receives a binary input x, then its output will be
C[x]. The RAM neuron has probabilistic versions denoted Probabilistic Logic
Neuron (PLN), Multivalued Probabilistic Logic Neuron (MPLN) and pRAM.
In the PLN neuron it is possible to store 0, 1 and u in the memory positions.
The u value corresponds to the probability of 50% to output 0 or 1. In the
MPLN neuron there are a finite number of probabilities that can be stored in
the memory position and in the pRAM neuron one can store a finite number of
arbitrary precision probabilities.

A non-deterministic version of the PLN neuron is denoted GSN. The GSN
neuron can receive inputs and can output values in the set {0, 1, u}. If one value
u is in the input lines of the GSN, the neuron will access more than one memory
position simultaneously. With input u the neuron will enter in more than one
memory position. For instance, if a neuron with two inputs receives the signal
u0, the neuron will access memory positions 00 and 10.

3 Quantum computation

For some problems there are quantum algorithms that solve problems faster
than any known classical algorithm. For instance, the Grover’s search algorithm
[4], and the Shor’s factoring algorithm [5] (that runs in polynomial time). In
this Section, we present basic concepts of quantum computation necessary to
understand this work.

A quantum bit is a vector in the complex vector space C2. The computational
basis of C2 is the ordered set {|0〉, |1〉}, where |0〉 = [1, 0]

T
and |1〉 = [0, 1]

T
. A

quantum bit can be described as α|0〉+β|1〉, where |α|2 + |β|2 = 1. To represent
more than one quantum bit it used the tensor product.

A quantum operator over n qubits is a unitary operator on a vector space
with dimension 2n. Operators in Equation 1 are examples of quantum operators
over one qubit. For instance, H|0〉 = 1√

2
(|0〉+ |1〉) = |+〉. With the quantum

mechanical interpretation, one can think in state |+〉 as a superposition of the
bits 0 and 1. The quantum bit is simultaneously in the bits 0 and 1.

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
H = 1√

2

[
1 1
1 −1

]
(1)

Quantum parallelism uses states in superposition to calculate several values
of a function in one single quantum step. Let f : Bm → Bn be a Boolean
function. One can define the quantum operator Uf that implements the function
f in a quantum computer, as described in Equation 2. If state |x〉 is a state in
superposition and |y〉 = 0, then Uf will calculate all the values of f(xi) for each
xi in the superposition as Uf |x〉|0〉 =

∑
i |xi〉|f(xi)〉.
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Uf |x〉|y〉 = |x〉|y + f(x)〉 (2)

Apparently one can use quantum parallelism to solve instantaneously any
problem that can be represented as a Boolean function. But one cannot observe
a quantum state directly. A measurement of a quantum bit α|0〉+ β|1〉 returns
only |0〉 or |1〉 with probability |α|2 or |β|2. After the measurement the state
collapses to the measurement result. A quantum state with multiple qubits can
be represented by |ψ〉 =

∑
i αi|i〉. A measurement of this state will return |i〉

with probability |αi|2. After the measurement the state collapses to |ψ〉 = |i〉.

4 Single shot learning algorithm for WNNs

In [6] is presented a Nonlinear Single Shot Learning Algorithm (NSLA). The
NSLA requires a single execution of the neural network, but a nonlinear quantum
operator is used to train the network. Nonlinear quantum computation implies
that P is equal to NP [7]. It is possible that nonlinear quantum computation
breaks physics laws of the nature.

In this paper we propose a quantum linear algorithm to train weightless neu-
ral networks, denoted Linear quantum Single Shot learning Algorithm (LSSA).
LSSA is based on the learning algorithm proposed in [8] and in the recovering
algorithm of the quantum associative memory proposed in [9]. Before describing
the LSSA we first show how to represent a WNN in a quantum computer. There
are different ways to represent a neural network in a quantum computer. For
instance, in [8] weights are qubits and in [10] weights are quantum operators.

Boolean weightless neural networks can be represented as a string of bits
and its functionality can be realized as a Boolean function. For instance a RAM
neuron with two inputs and 4 one-bit memory positions can be represented by
a string of 6 bits. The first two bits represent the inputs and the 4 last ones
represent the memory content.

Boolean functions can be directly generalized to quantum computation. So
we represent the WNN in a quantum computer with a string of qubits. The
action of the WNN will be represented by a quantum operator N . For example, a
WNN with two inputs x1, x2 has its action in the computational basis represented
by the operator N as described in Equation 3. The presentation of a pattern to
a weightless neural network correspond to a multiplication of the neuron matrix
representation and the pattern vector representation.

N |x1x2, p1p2p3p4, o〉 = |x1x2, p00p01p10p11, o+ px1x2
〉 (3)

Algorithm 1 present the Linear quantum Single Shot learning Algorithm. In
Step 1 the quantum operatorN representing a classical weightless neural network
is created. This operator can be represented by a matrix with dimension 2n×2n,
with n = ni + np + no, where ni is the number of inputs, np is the number of
memory position, and no is the number of outputs.

In Step 2 all memory contents are initialized with the value H|0〉. With
this initialization we have all possible neural networks for this configuration

525

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



Algorithm 1: Linear quantum Single Shot learning Algorithm

1 Let N be a quantum operator representing a WNN. .
2 Initialize all memory registers with the quantum state H|0〉. .
3 Initialize a quantum register |performance〉 with the state |0〉n.
4 Initialize a quantum register |objective〉 with the state |0〉.
5 foreach pattern p and desired output d in the training set do
6 Initialize the register p, o , d with the quantum state |p, o, d〉.
7 Present the pattern p to the network.
8 if |oi〉 = |di〉 then
9 Add 1 to the register |performance〉

10 end

11 end
12 For a given threshold θ, set |objective〉 = |1〉 if performance > θ.
13 Perform a quantum search to recover a state with the desired

performance.

in superposition. Step 3 initializes a quantum state |performance〉 that will
be used to store the performance of each neural network configuration in the
superposition. Step 4 initializes a quantum register |objective〉 with the state
|0〉. The quantum register |objective〉 will be used to perform a quantum search.

In Steps 5 to 11 patterns are presented to the network, and the quantum
register performance is set to |performance+ 1〉. At the conclusion of this loop
each neural configuration in superposition will have its performance together
with the neural network configuration.

In Step 12 the value of quantum register |objective〉 is set to |1〉 if its value
is greater than a given threshold θ. In this moment each network configuration
in the superposition will have |objective〉 = |1〉 if the value in quantum register
is greater than θ, otherwise |objective〉 = 0.

4.1 Learning algorithm example

Here we show an instance of the learning algorithm execution to train a RAM
neuron with two inputs to learn the two bit parity problem. This problem is rep-
resented by the training set P = {(|0, 0〉, |0〉), |0, 1〉, |1〉), |1, 0〉, |1〉), |1, 1〉, |0〉)}.

In steps 2 to 4 of the Algorithm is created a quantum state, where the param-
eters quantum register |p〉 is initialized with the state H⊗4|0〉. Output quantum
register is initialized in quantum state |o〉 = |0〉 and performance quantum reg-
ister is initialized with the quantum state |performance〉 = |0〉. The resultant
state is described in Equation 4.
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1

4
[|input〉|memory〉|output〉|desiredoutput〉|performance〉|objective〉] =

1

4

|input〉
 ∑

c∈{0,1}4
|c〉

 |0〉|desiredOutput〉|0〉|0〉
 (4)

In Steps 5 to 10, patterns of the training set are presented to the network
and in each iteration the performance is updated. For instance, when the input
|01〉 is fed to the network we initialize the quantum register desiredOutput with
the quantum state |1〉.

1

4
N

|01〉

 ∑
c∈{0,1}4

|c〉

 |0〉|1〉|0〉|0〉
 =

1

4
N |01〉 (|0000〉|0〉|1〉|0〉|0〉+ |0001〉|0〉|1〉|0〉|0〉+ |0010〉|0〉|1〉|0〉|0〉+

|0011〉|0〉|1〉|0〉|0〉+ |0100〉|0〉|1〉|0〉|0〉+ |0101〉|0〉|1〉|0〉|0〉+
|0110〉|0〉|1〉|0〉|0〉+ |0111〉|0〉|1〉|0〉|0〉+ |1000〉|0〉|1〉|0〉|0〉+
|1001〉|0〉|1〉|0〉|0〉+ |1010〉|0〉|1〉|0〉|0〉+ |1011〉|0〉|1〉|0〉|0〉+

|1100〉|0〉|1〉|0〉|0〉+ |1101〉|0〉|1〉|0〉|0〉+ |1110〉|0〉|1〉|0〉|0〉+
|1111〉|0〉|1〉|0〉|0〉)

(5)

The neuron will be applied in the state described in Equation 5. In the
boldfaced configurations, the neuron output will be equal to the desired output.
In this case performance = performance + 1. After the neuron execution we
will have the quantum state described in Equation 6.

|01〉

 ∑
c∈{0,1}4
c1 6=1

|c〉

 |0〉|1〉|0〉|0〉+ |01〉

 ∑
c∈{0,1}4
c1=1

|c〉

 |1〉|1〉|1〉|0〉 (6)

In the next step we apply the quantum operator N−1, the inverse of N , with
the objective to restore the value of the calculated output to |0〉. Then one can
present the next training pattern and desired output.

In next steps, the others patterns in the training set will be presented to
the network. Only the neuron with memory configuration |0110〉 will match the
desired output for all patterns. We use this information to set the quantum
register |objective〉 = |1〉 only for the configuration |0110〉.

Now we perform a quantum search in the neuron configuration space. The
quantum register |objective〉 is used only in the Oracle application. The phase
shift is applied only if |objective〉 = 1. In this way, the configuration |0110〉 is
returned with very high probability.
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5 Conclusion

The SSLA is the first learning algorithm for weightless neural networks that
requires a single epoch and performs a global search in the parameter network
space. The algorithm proposed is a quantum algorithm and its output is the set
of parameters for a classical weightless neural network.

One possible future work is to simulate the learning process of a quantum
weightless neural network. Simulation of quantum systems has exponential cost
and it is possible only for very small problems. This simulation can be performed
using a parallel model of computation, for instance using GPU processors [11].

Another possible future work is to develop a quantum weighted neural net-
work with the properties found in quantum weightless neural networks. For
instance with the capacity to simulate classical weighted neural networks [12].
This can be done creating a quantum neuron where inputs, weights, and outputs
are elements of a field.
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