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Abstract. We propose in this paper a new active learning method that
makes no considerations about the data distribution and does not need to
adjust any free parameter. The proposed algorithm is based on extreme
learning machines (ELM) and a perceptron with analytical calculation of
weights. We show that the proposed model have good results using a
reduced set of patterns.

1 Introduction

The main idea of active learning is that the algorithm can interact with the ex-
pert and ask for labels only for the most informative patterns. This is important
in a scenario where many unlabeled data are available and labels have a high
cost. Many authors consider that the most informative patterns are those closer
to a separating hyperplane [1, 2, 3, 4]. In order to perform active learning many
studies make considerations that can often not be realistic as, for example, con-
sidering that data is linearly separable and that the data distribution is uniform
[2, 3, 4]. Furthermore, in many methods it is necessary to adjust free parameters
what requires an additional labeled dataset in order to perform cross-validation.
Many of these methods can use kernel functions to linearize the data in the fea-
ture space, but the most common kernel functions require kernel parameters to
be adjusted.

All these characteristics of the most common active learning methods moti-
vated the development of a new algorithm which can work with arbitrary dis-
tributions of the dataset, without linear separability assumptions, that has only
the number of hidden neurons of a Extreme Learning Machine as a parameter
to set and that is capable to perform on-line learning. In this study we propose
a new active learning algorithm that is based on extreme learning machines [5]
using a large number of hidden neurons that must be greater than the dimension
of the pattern. The linear separator in the output layer is based on the percep-
tron algorithm proposed by Fernandez-Delgado et al. [6] that, according to the
authors, minimizes the training error and maximizes the margin, behaving as a
linear SVM, but being free of tuning parameters and permitting on-line learning.
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This paper is organized as follows: section 2 describes the proposed method;
section 3 presents the results of applying the proposed method in different bench-
marks; section 4 presents the conclusions.

2 Proposed Method

The neural network training based on Extreme Learning Machines has become
very popular in recent years. Huang et al. [5] proposed an algorithm consisting
of a neural network with a hidden layer of N neurons with weight vectors i
(wi) randomly chosen, resulting in the weight matrix Wih = [w1,w2, ...,wN ].
The weights of the output layer (who) are calculated using a linear classifier
which separates the data in the feature space defined by propagation of data
through the hidden layer. This idea is related to Cover’s theorem [7], which
shows that when the data is projected onto a high-dimensional space there is
a higher probability to becoming linearly separable. The number of hidden
neurons should be larger than the dimension of the input data [8]. Huang et al.
[5] showed that the algorithm works correctly only if the number of patterns is
equal or greater than the number of hidden neurons. To perform active learning
using ELMs we must choose another linear classifier in the output layer because
the main objective is to build classifiers using fewer labels. In this case the
number of labels could be lesser than the number of hidden neurons.

An algorithm to carry on such a linear separation is the model proposed re-
cently by Fernandez-Delgado et al [6]. They proposed a new analytical approach
to train perceptrons that maximizes margin and minimizes error.

According to the authors, the algorithm works as a SVM in which all training
patterns are support vectors with Lagrange multipliers equal to 1. The weights
are adjusted as follows:

w0 =

∑N
k=1 dkxk

‖∑N
k=1 dkxk‖

(1)

For deductions and more details see [6]. In this equation xk is a pattern and
dk is the corresponding label. To obtain the classification to a desired pattern
just calculate y(x) = sign(wT

0 x).
This approach does not need to adjust free parameters and allows on-line

learning, since it simply add the new patterns, multiplied by its desired output,
to the weight vector and normalizes the resulting vector again to obtain ||w0|| =
1. Thus it is expected that active learning could improve the generalization
capability of this model, by learning only the most relevant patterns.

The question we must answer is: how to find the optimal number of labels
needed to obtain maximum generalization capability for this model? We believe
that a good way is to extend the well known perceptron convergence theorem
[9] for the model of Fernandez-Delgado et al [6] and use the result as a criterion
to decide which patterns should be labeled.

The perceptron convergence theorem states that the Rosenblatt’s algorithm
[9] will converge with a number of iterations less than or equal to a maximum

614

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



value if the problem is linearly separable [10]. In this algorithm a pattern is
learned by perceptron only if classification has been incorrect. The proof of this
theorem, proposed by [11], can be extended to Fernandez-Delgado’s perceptron.
For this perceptron all the available patterns are used for training, regardless if
its classification was correct or incorrect. Thus, it is easy to extend the deduction
of this theorem for this model to obtain the maximum number of labels needed
to ensure the algorithm’s convergence:

nmax =
β + 2θ

α2
(2)

Where

α = min
x(n)∈ζ

|wTx(n)|, β = max
x(k)∈ζ

||x(k)||2, θ = max
x(k)∈ζ

|wT (k)x(k)| (3)

and ζ is the training set.
Equation 2 shows that Fernandez-Delagado’s perceptron converges using at

most β+2θ
α2 labels.

2.1 Extreme Active Learning Machines

We will build an active learning model that consists of an ELM hidden layer
and an output layer based on Fernandez-Delgado’s perceptron. The first layer
will project the data onto ELM feature space and the second one will perform
a linear separation of the data in this new space. Algorithm 1 presents the
proposed method. In this algorithm a pattern of a set of candidates patterns C
is randomly chosen and projected onto ELM feature space and its label will be
queried only if the calculated nmax is greater than the number of already learned
patterns, otherwise the pattern is disposed. The process continues until evaluates
all candidate patterns or until the maximum number of labels is reached. This
maximum number depends of the available resources to obtain labels from the
expert.

3 Experiments and Results

The experiments in this study aim to compare the proposed method, here called
EALM, with perceptrons of Dasgupta et al [3], here called PDKCM, and Cesa-
Bianchi et al [2], here called PCBGZ, with Tong et al [1] SVM, here called
SVMTK and with an SVM trained using all training patterns, here called SV-
MALL. Our goal is to use these methods as linear outputs for an ELM hidden
layer applied in non-linearly separable problems. In all cases, the ELM hidden
layer is the same, consisting of 1000 neurons and with weights randomly selected
in the range [-3, 3], as proposed by [8]. Patterns with missing values are removed.
All datasets used in this work are from UCI Machine Learning repository [12].

In all cases, 30% of the datasets have been separated to adjust free parameters
for the models PDKCM, PCBGZ and the SVMs. The adjustment was made
using the 10-fold cross-validation, similarly to the work of Monteleoni et al [4].
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Input : Candidates set C, initial size of the training set m, maximum
number of labels L

Output : Weight vector w
Method:

Propagate all patterns from C through the ELM layer to create the set1

CELM ;
Take and remove at random m pattens from CELM and query its labels;2

Calculate who =

m∑

k=1

dkφ(xk)

||
m∑

k=1

dkφ(xk)||
;

3

repeat4

Take and remove at random a pattern x from CELM ;5

Calculate α, β and θ using equation 3;6

Calculate n = β+2θ
α2 ;7

if n > m then8

Query the label d to pattern x;9

Update w = w+dφ(x)
||w+dφ(x)|| ;10

m = m+ 1;11

end12

until (m = L) or (CELM = Ø) ;13

Algorithm 1: Extreme Active Learning Machine

This adjustment was carried out to obtain the best possible AUC (Area Under
the ROC Curve) with a reduced number of labels. For the model PCBGZ, we
also tested the optimal parameter b = (maxx∈C ||x||2)/2 [2], and we called the
resulting model as PCBGZ-OPT. For SVMs the regularization parameter C has
been set using the values of range {2−5, 2−4, 2−3, 2−2, 2−1, 1, 2, 22, ..., 214}, as
proposed by [6].

With the remainder data was performed 10-fold cross-validation obtaining
the mean accuracy, mean AUC and the average number of used labels. The
cross-validation was performed 10 times. All data was normalized in order that
the input patterns have zero mean and unity standard deviation.

The results are shown in Table 1. The number of labels used effectively
by a model consists of the labels used to adjust free parameters and the labels
obtained from the active learning process, so Table 1 shows the number of labels
achieved by active learning (AL Labels) and the number of labels effectively
used (Effective Labels). As can be seen, the best results were obtained for
EALM model and for SVMTK model.

4 Conclusion

Active learning has attracted attention of many researchers in recent years be-
cause large amounts of data has been generated and labeling can have a high
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cost. This motivates developing good classifiers using fewer labels. Moreover
most of the existing models needs to adjust free parameters what requires an
additional labeled dataset for this purpose.

The EALM model makes no constraints on the data distribution and does
not require tuning free parameters. If we consider that the total number of
labels required for active learning is the sum of the labels used to adjust the free
parameters with the number of labels used for training, we can conclude that the
EALM model uses fewer patterns than the other models and it is more practical.
The closeness of EALM results with those obtained by the SVM based models
is certainly due to the fact that the Fernandez-Delgado’s perceptron [6] works as
a SVM where all training patterns are considered support vectors. Furthermore,
EALM only stores the weights vector which allows on-line learning, with low
computational cost if compared with SVMs.

References

[1] Simon Tong and Daphne Koller. Support Vector Machine Active Learning with Ap-
plications to Text Classification. Journal of Machine Learning Research, pages 45–66,
2001.
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Table 1: Average results of 10 runs of 10-fold cross-validation
Key AL Labels Effective Labels Ac AUC

EALM

HRT 88.58 ± 5.97 88.58 0.85 ± 0.01 0.84 ± 0.01
WBCO 39.10 ± 2.79 39.10 0.98 ± 0.00 0.98 ± 0.00
WBCD 80.07 ± 3.96 80.07 0.97 ± 0.01 0.97 ± 0.01
PIMA 188.16 ± 6.18 188.16 0.76 ± 0.01 0.72 ± 0.01
SNR 103.89 ± 2.88 103.89 0.71 ± 0.03 0.72 ± 0.03
ION 105.30 ± 5.86 105.30 0.89 ± 0.01 0.87 ± 0.02
AUST 137.92 ± 8.34 137.92 0.86 ± 0.01 0.86 ± 0.01
LIV 163.54 ± 5.43 163.54 0.60 ± 0.02 0.60 ± 0.02
GER 295.71 ± 8.26 295.71 0.75 ± 0.01 0.68 ± 0.01
SPAM 515.48 ± 18.56 515.48 0.92 ± 0.00 0.91 ± 0.00

PDKCM

HRT 65.18 ± 1.43 146.18 0.77 ± 0.02 0.77 ± 0.02
WBCO 63.46 ± 2.50 268.46 0.97 ± 0.00 0.97 ± 0.01
WBCD7 36.01 ± 0.87 207.01 0.93 ± 0.02 0.92 ± 0.02
PIMA 131.02 ± 3.86 361.02 0.72 ± 0.02 0.70 ± 0.02
SNR 77.01 ± 1.85 139.01 0.71 ± 0.03 0.72 ± 0.03
ION 51.01 ± 1.77 156.01 0.83 ± 0.03 0.80 ± 0.03
AUST 145.56 ± 3.18 352.56 0.83 ± 0.01 0.83 ± 0.01
LIV 142.22 ± 3.56 246.22 0.61 ± 0.02 0.61 ± 0.02
GER 247.85 ± 5.07 547.85 0.71 ± 0.01 0.64 ± 0.01
SPAM 314.13 ± 6.07 1694.13 0.87 ± 0.01 0.87 ± 0.01

PCBGZ

HRT 50.83 ± 2.10 131.83 0.78 ± 0.02 0.78 ± 0.02
WBCO 182.32 ± 2.98 387.32 0.97 ± 0.01 0.97 ± 0.01
WBCD 203.67 ± 2.79 374.67 0.96 ± 0.01 0.96 ± 0.01
PIMA 193.01 ± 4.35 423.01 0.71 ± 0.01 0.69 ± 0.02
SNR 93.28 ± 1.77 155.28 0.71 ± 0.03 0.70 ± 0.02
ION 116.28 ± 3.33 221.28 0.86 ± 0.01 0.83 ± 0.02
AUST 170.40 ± 2.75 377.40 0.82 ± 0.02 0.81 ± 0.02
LIV 156.05 ± 2.65 260.05 0.59 ± 0.03 0.59 ± 0.03
GER 180.43 ± 3.37 480.43 0.70 ± 0.01 0.63 ± 0.01
SPAM 1168.10 ± 12.43 2548.10 0.89 ± 0.01 0.89 ± 0.01

PCBGZ-OPT

HRT 168.47 ± 0.36 249.47 0.77 ± 0.03 0.76 ± 0.03
WBCO 424.06 ± 0.74 629.06 0.97 ± 0.01 0.96 ± 0.01
WBCD 353.04 ± 0.54 524.04 0.96 ± 0.01 0.96 ± 0.01
PIMA 480.08 ± 0.51 710.08 0.69 ± 0.02 0.67 ± 0.02
SNR 130.46 ± 0.30 192.46 0.71 ± 0.03 0.70 ± 0.02
ION 219.55 ± 0.33 324.55 0.86 ± 0.03 0.83 ± 0.03
AUST 430.49 ± 0.61 637.49 0.79 ± 0.01 0.79 ± 0.01
LIV 215.38 ± 0.29 319.38 0.59 ± 0.03 0.59 ± 0.03
GER 624.64 ± 0.63 924.64 0.70 ± 0.01 0.64 ± 0.02
SPAM 2860.56 ± 1.69 4240.56 0.89 ± 0.01 0.89 ± 0.01

SVMTK

HRT 45.70 ± 4.24 126.70 0.82 ± 0.01 0.82 ± 0.01
WBCO 18.70 ± 1.83 223.70 0.97 ± 0.00 0.97 ± 0.00
WBCD 40.00 ± 2.79 211.00 0.98 ± 0.00 0.97 ± 0.00
PIMA 138.60 ± 26.06 368.60 0.75 ± 0.01 0.72 ± 0.01
SNR 59.60 ± 9.71 121.60 0.75 ± 0.02 0.75 ± 0.02
ION 55.80 ± 5.77 160.80 0.90 ± 0.01 0.87 ± 0.01
AUST 68.90 ± 13.90 275.90 0.85 ± 0.01 0.85 ± 0.01
LIV 96.40 ± 26.01 200.40 0.64 ± 0.02 0.64 ± 0.02
GER 207.40 ± 17.33 507.40 0.74 ± 0.01 0.66 ± 0.01
SPAM 340.00 ± 25.26 1720.00 0.92 ± 0.00 0.92 ± 0.00

SVMALL

HRT 170.00 251.00 0.81 ± 0.01 0.83 ± 0.08
WBCO 430.00 635.00 0.97 ± 0.00 0.97 ± 0.02
WBCD 358.00 529.00 0.98 ± 0.00 0.99 ± 0.02
PIMA 485.00 715.00 0.74 ± 0.01 0.71 ± 0.08
SNR 131.00 193.00 0.81 ± 0.01 0.82 ± 0.10
ION 221.00 326.00 0.91 ± 0.01 0.90 ± 0.07
AUST 434.00 641.00 0.84 ± 0.01 0.84 ± 0.04
LIV 217.00 321.00 0.67 ± 0.02 0.62 ± 0.11
GER 630.00 930.00 0.75 ± 0.01 0.64 ± 0.04
SPAM 2898.00 4278.00 0.93 ± 0.00 0.93 ± 0.02
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