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Abstract. We present simulation results that clarify the role of Spike-
Timing Dependent Plasticity (STDP) in brain processing as a putative
mechanism to transfer spatio-temporal regularities, as observed in sensory
signals, toward action, expressed as a global increase of the target popu-
lation activity, followed by a reset. The repetition of this activation-reset
mechanism gives rise to a series of synchronous waves of activity when the
same stimulus is repeated over and over. Our simulation results are ob-
tained in recurrent networks of conductance-based neurons under realistic
coupling contraints.

1 Introduction

Synchronous activity patterns are found in natural and artificial recurrent neural
networks when (i) recurrent excitatory and inhibitory influences balance each
other and (ii) when the membrane potential of neurons undergo strong variations
(i.e. when the neurons strongly amplify their input). The parametric conditions
under which synchrony can be obtained have been analyzed, from the most
simple binary units [1], to integrate and fire [2] or more elaborate conductance-
based models [3, 4]. The functional role of this synchronous activity is not fully
clarified yet. Spontaneous brain activity is characterized by a high degree of
irregularity [5]. Some synchrony can however be observed directly or indirectly
when the brain is involved in a task [6, 7]. Synchronous firing is commonly
observed in the first steps of olfactory recognition [8]. It is generally admitted
that synchrony can help to transmit a structured signal from population to
population [9, 10] or to help distant populations to “work together” [7].

The final brain processing activity may finely rely on the interplay between
asynchrony and synchrony. Following Freeman [8], we consider that a transition
to synchrony may be observed when the brain faces an event of particular inter-
est. In order to allow such responses to rely on experience, we moreover suppose
that some plasticity process may allow to enhance synchrony in a network of
units spontaneously displaying irregular activity.

The Spike-Timing Dependent Plasticity (STDP) is a serious candidate for
implementing such synaptic plasticity effects. The rule originates from biological
evidences [11] showing that an excitatory synapse is potentiated if the EPSP
(Excitatory Post-Synaptic Potential) is shortly followed by the emission of an
action potential at the soma, and depressed in the opposite case (when the
AP is followed by the EPSP). An important effect of STDP is that it reduces
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the latency of a neuron’s response to a given input [12, 13]; the behaviour of
STDP has also been studied on larger, recurrent networks, but the results are
more ambiguous: while it has been shown that in some conditions it can lead
to the emergence of neuronal groups [14, 15], these results seem to depend on
the precise implementation, since a slightly different rule on a different neuron
model gives different results: there is no structure development, strong synapses
remaining unstable [16].

We propose here to clarify the role of Spike-Timing Dependent Plasticity
(STDP) in recurrent networks of conductance-based neurons1 under realistic
coupling contraints.

Several implementations of the STDP update mechanism have been proposed
in the literature. Our implementation is all-to-all [18] and additive: the weight
update depends on every previous synaptic event (the influence of the less recent
events fading with time) and doesn’t take into account the current weight of the
synapse. Concretely:

w′
ij(t) = wij(t− dt) +

α

N
[Si(t)εj(t− dij)− εi(t)Sj(t− dij)]

where the trace εi(t) =
∑

s<t,Si(s)=1

exp

(
− t− s

τm

)
can be considered as a short-

term estimation of the firing rate of the ith neuron and α is a learning parameter
(α = 1 in simulations). This update scheme divides in two terms. The first term
corresponds to the synaptic potentiation: a significant weight increment takes

1We consider a population of N neurons. Consider neuron i. We use the following update
for the membrane potential Vi (leaky integrate and fire with conductance-based synapses):

C
dVi(t)

dt
= G0(Vi(t)− V0) +

[
VE − Vi(t)

VE − V0
GE

i (t)−
Vi(t)− VI

V0 − VI
GI

i (t)

]
+ Ii(t)

where C is the membrane conductance, V0 is the resting potential, VE is the reversal potential
on excitatory synapses, VI is the reversal potential on inhibitory synapses, Ii is an exterval
input current, Gi,E is the total excitatory conductance and Gi,I is the total inhibitory con-
ductance. For simpler parameter settings, we use a normalized neuron i.e. V0 = 0, θ = 1,
VI = −1 and VE = 6 The membrane time constant is τm = C

G0
. Except for the sign of their

target synapses, the neurons are all similar (same membrane time constant τm = 10 ms).
When the potential crosses the firing threshold θi, the potential is immediately reset to 0, i.e.
V (t)← 0 and a spike is emitted i.e. an instantaneous Dirac impulse is emitted. We note Si(t)
the output of the neuron at time t, where Si(.) is a sum of all past impulses until t. We use
a refractory period τr = 1 ms which is the minimal time interval between two spikes. The

synaptic weight from neuron i to neuron j is wij and
Gi,E(t)

G0
=

∑
j|wij>0 wijSj(t− dij) and

is
Gi,I (t)

G0
= −

∑
j|wij<0 wijSj(t− dij), where dij is the axonal transmission delay.

In addition to the standard update, we implement the following spike-frequency adaptation
(see [17]) based on threshold adaptation:

τSFA
dθi

dt
= −θi + kSFASi(t)

with a linear threshold decay (with time constant τSFA = 300 ms) compensated at each spike
(with shift parameter kSFA = 100), increasing the excitability of the inactive neurons and
decreasing the excitability of the active ones.
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Fig. 1: Excitatory population activity during STDP learning. -A- Non-periodic
input -B- Periodic input.

place when a post-synaptic spike is associated with a strong pre-synaptic trace
(recent pre-synaptic excitations). The second term corresponds to the synaptic
depression: the weight significantly decreases when a pre-synaptic pulse is as-
sociated with a strong post-synaptic trace (i.e. after post-synaptic excitation).
The result is a global potentiation of pre-post sequences of excitation and a
depression of post-pre sequences of excitation. This rule is strictly antisymmet-
rical, i.e. the potentiation compensates the depression, so it can be considered
as “balanced”. From a computational point of view, the storage of a trace is not
very expensive, strictly local and as such biologically plausible.

There is no upper bound, but in order to prevent uncontrolled weight drift,
the total amount of synaptic weights Wi =

∑
j wij is maintained constant with

the following scaling factor: βi(t) =
∑

j wij(t−dt)∑
j w′

ij(t)
so that : wij(t) = βi(t)w

′
ij(t).

Moreover, the sign change is forbidden (the lower bound is thus zero in the case
of excitatory weights).

2 Simulations

We take a network composed of NE = 1000 excitatory neurons and NI = 400
inhibitory neurons. The average number of afferent synapses is equal toK = 100,
giving a 10% density for the excitatory inputs and 25% density for the inhibitory
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inputs. The average synaptic sum from the different synaptic tracts are AEE =
AIE = 10 and AEI = AII = −10, with variance HEE = HEI = HIE = HII = 2.
The excitatory and inhibitory tracts are thus expected to balance each other on
average, with a variance of the total synaptic sum equal to 4.

Networks are then randomly drawn and initialized. Then, the activity is
observed for several milliseconds under different input conditions. The param-
eters have been carefully chosen in order to favour a low firing rate2. In the
absence of any external input, the network activity collapses to 0 in few steps3.
As observed in many other simulation setups, a small external signal is enough
to maintain a realistic low-firing rate regime (often considered as the default
activity in the cortex). In order to avoid unexpected synchronization, we take
a broad distribution of synaptic delays : the delays dij are Poisson distributed.
The minimum delay is 6 ms. The average delay is 10 ms, i.e. dij ∼ 6 + P(λ)
with λ = 4 ms.

The external input represents the activity from distant areas. For the purpose
of plasticity and learning, we build specific input signals, having the possibility
to contain reproducible features. We thus construct time-varying signals

I(t) = P1(t) sin(2πft) +P2(t) sin(2πft+
π

2
)

with P1(t) and P2(t) being renewable gaussian spatial patterns and f (angular
speed), equal to 30 ms in simulations. In the periodic case, P1 and P2 are
drawn once acccording to N (0, 1√

τm
) and remain constant throughout learning,

so that the period of the signal is f . In the non-periodic case, P1 is redrawn
when 2πft = 0 mod 2π and P2 is redrawn when 2πft = π

2 mod 2π, which
introduces novelty and cancels the periodicity.

After a short relaxation (200 ms), the STDP plasticity is activated for 5 s on
the excitatory synapses of excitatory neurons only. We represent in figure 1 the
population response in both cases (aperiodic and periodic input signals). The
two simulations are done on the same network. Only the input signals differ.
The two upper panels present the global activity of the excitatory population
during the whole simulation. The initial activity is weak (approx. 20-30 Hz),
non-periodic in both cases, whereas small γ-like oscillations can be detected with
deeper inspection. During learning, the weights change in a similar manner in

2The framework of balanced neural networks is very popular for it gives account for the
statistics of the spike trains observed in vivo in cortical layers, and also for the high variability
observed in the membrane potential of neurons. Balanced neural networks are now considered
as the canonical form of connectivity for the simulation of realistic large scale “cortical” neural
networks. For building such a model, two populations of neurons must be defined, one of
excitatory neurons, the other of inhibitory neurons, each population owning self-feeding recur-
rent connection and sending axons to the other population. The “balance” is ensured as soon
as the expectation of the total synaptic sum is zero, i.e. AEE = −AEI and AIE = −AII ,
where E represents the excitatory population, I represents the inhibitory population and Aαβ

represents the β → α amplification, with α, β ∈ {E, I}. Strong values for the amplifications
drive the networks to “high conductance” states where the network is expected to have shorter
reaction times and a linear response to external signal.

3The network is however close to a bifurcation point (Htot > 2.2) where a robust sponta-
neous activity can emerge from the self-feeding connections (without external stimulation).
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both cases, without saturation or drift. In the first case (non-periodic input),
the final activity is very similar to the initial one : same average population
frequency, same non-periodicity, light gamma oscillations. In the second case, a
clear enhancement of the response is observed. The average frequency remains
approximately the same, but the population response becomes periodic at the
population level, whereas individual neurons keep firing irregularly. This global
synchronization takes place in the beta range, with a 60 ms period. In more
detail (i) the small gamma oscillations are kept embedded in the larger beta
oscillations and (ii) the beta synchronous response is temporally coupled to the
input, where 60 ms is exactly the double of the input 30 ms period.

3 Discussion

A first and interesting observation, that was already noticed in [16] is the al-
most absence of any effect in the non-periodic case. Knowing that in a network
of pure Poisson neurons, the STDP potentiations and the depressions globally
compensate, the absence of global effect obtained in our first simulation suggests
a very irregular underlying activity (i.e. close to pure random) without emerging
structure.

On the contrary, the global population effect obtained in the second case sug-
gests that a periodic response is indeed present in the initial activity, whereas
difficult to detect from the chaotic self-sustained activity. Only the reiteration of
the same pattern allows the network to capture the hidden sequential regularities
contained in the activity. The effect of the Hebbian rule being to increase the se-
quential chains of activation, a specific activity build-up is thus rapidly obtained.
This activity build-up can be interpreted as a specific response or “action” at
the population level. Interesting to this regard is the activity decrease that sys-
tematically follows the increase. This effect is probably a population effect due
to the balance of strong excitation and strong inhibition in the network. In a
balanced setting, a stronger than usual activation is expected to be followed by a
compensatory response of the inhibitory population, leading to a slow oscillation
regime, as observed in [2]. Interesting from this perspective is the coupling of
the slow oscillations to the periodic input, the network being visibly “paced” by
the input.

Finally, we hope those results clarify the role of STDP in recurrent neu-
ral networks, as a putative mechanism for shaping the population response (or
population “action”) when reproducible sequences are present in the intrinsic ac-
tivity. The presented results are fully reproducible with different initial draws,
but a more systematic study remains to be done in order to clarify the range
of parameters under which the considered mechanism is expected to take place.
Those simulation results constitute a first insight toward a more systematic study
of collective action as a large-scale equivalent of small-scale cellular action, in
particular regarding network-wide decision making with respect to accumulated
sensory (or sensori-motor) evidence.

33

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



References

[1] S. Amari. A method of statistical neurodynamics. Kybernetik, 14:201–215, 1974.

[2] N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. Journal of Computational Neuroscience, 8:183–208, 2000.

[3] A. Lechner, M. Ahmadi, and J. Hertz. High conductance states in a mean field cortical
network model. Neurocomputing, 58-60:935–940, 2004.

[4] A. Kumar, S. Schrader, A. Aertsen, and S. Rotter. The high-conductance state of cortical
networks. Neural Computation, 20:1–43, 2008.

[5] W. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with
temporal integration of random epsps. J. of. Neuroscience, 13(1):334–450, 1993.

[6] A. Riehle, S. Grün, M. Diesman, and A. Aertsen. Spike synchronization and rate modu-
lation differentially involved in motor cortical function. Science, 278:1950–1953, 1997.

[7] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F.J. Varela.
Perception’s shadow: long-distance synchronization of human brain activity. Nature,
397(6718):430–433, 1999.

[8] C.A. Skarda and W.J. Freeman. How brains make chaos in order to make sense of the
world. Behav. Brain Sci., 10:161–195, 1987.

[9] K. Mac Leod and G. Laurent. Distinct mechanisms for synchronization and temporal
patterning of odor-encoding cell assemblies. Science, 274:976–979, 1996.

[10] J. Cassenaer and G. Laurent. Hebbian stdp in mushroom bodies facilitates the syn-
chronous flow of olfactory information in locusts. Nature, 448:709–713, 2007.

[11] Guo-Qiang Bi and Mu-Ming Poo. Synaptic modifications in cultured hippocampal neu-
rons : Dependence on spike timing, synaptic strength, and postsynaptic cell type. The
Journal of Neuroscience, 18(24):10464–10472, 1998.

[12] L.F. Abbott Sen Song, Kenneth D. Miller. Competitive hebbian learning through spike-
timing dependent synaptic plasticity. Nature, 2000.

[13] Rudy Guyonneau, Rudy VanRullen, and Simon Thorpe. Neurons tune to the earliest
spikes through stdp. Neural Computation, 17:559–879, 2005.

[14] Eugene M. Izhikevich, Joseph A. Gally, and Gerald M. Edelman. Spike-timing dynamics
of neuronal groups. Cerebral Cortex, 14:933–944, 2004.

[15] Eugene M. Izhikevich. Polychronization: Computation with spikes. Neural Computation,
18:245–282, 2006.

[16] Abigail Morrison, Ad Aertsen, and Markus Diesmann. Spike-timing-dependent plasticity
in balanced random networks. Neural Computation, 19:1437–1467, 2007.

[17] Boris Gutkin and Fleur Zeldenrust. Spike-frequency adaptation. Scholarpedia, under
review.

[18] J.-P. Pfister and W. Gerstner. Triplets of spikes in a model of spike timing-dependent
plasticity. J. Neurosci., 26:9673–9682, 2006.

34

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.




