
Weighted Tree Kernels for Sequence Analysis

Christopher J. Bowles and James M. Hogan

School of Electrical Engineering and Computer Science,
Queensland University of Technology,

2 George St, Brisbane, QLD, 4000. AUSTRALIA.
{j.hogan@qut.edu.au}

Abstract. Genomic sequences are fundamentally text documents, ad-
mitting various representations according to need and tokenization. Gene
expression depends crucially on binding of enzymes to the DNA sequence
at small, poorly conserved binding sites, limiting the utility of standard
pattern search. However, one may exploit the regular syntactic structure
of the enzyme’s component proteins and the corresponding binding sites,
framing the problem as one of detecting grammatically correct genomic
phrases. In this paper we propose new kernels based on weighted tree
structures, traversing the paths within them to capture the features which
underpin the task. Experimentally, we find that these kernels provide per-
formance comparable with state of the art approaches for this problem,
while offering significant computational advantages over earlier methods.
The methods proposed may be applied to a broad range of sequence or
tree-structured data in molecular biology and other domains.

1 Introduction

Trees are a fundamental abstraction for the representation of structured data,
with particular utility in Natural Language Processing (NLP) (to capture gram-
matical structure; [2]), and in molecular biology to support functional and struc-
tural classification of proteins [10]. The challenge is to encapsulate the problem
structure in a form which admits rapid evaluation of similarity. Trees are of value
if the problem is inherently hierarchical, particularly if parent nodes support
some abstraction from their children. In this work, we view bacterial promoter
prediction (see section 4) as an NLP style parsing task, mapping a genomic
sentence to its parse tree with respect to a grammar defined by the molecular
structure of the binding protein and its associated binding sites. Genomic sim-
ilarity is then defined over the resulting tree structures. In contrast to earlier
node-labelled trees, these representations are also edge-weighted, with numerical
values assigned to each arc connecting nodes within a tree, and we hae developed
a number of new kernels which allow evaluation of this edge-weighted similar-
ity. These are presented here in the context of Support Vector Machine (SVM)
classification for the bacterial promoter problem, but they have more general ap-
plication in phylogenetic analysis, molecular structure classification, and general
network problems.

This paper is organised as follows: Section 2 presents a brief introduction to
the SVM, tree kernel methods and our notation, supporting the introduction of
our new kernels in Section 3. Section 4 presents the bacterial promoter prediction

283

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

problem and the results of our experiments with the new kernel methods. We
conclude in Section 5 with discussion of these results and the prospects for
refinements to our methods.

2 Tree Kernels and the Support Vector Machine

The binary SVM [1] is a linear classifier taking a set of labelled inputs (xi, yi), i =
1 . . .m, where xi is a training point drawn from an appropriate input space
(usually xi ∈ Rn) and yi ∈ {−1,+1} is the associated class label. SVM training
determines a decision boundary wtxi + b = 0, optimal in maximizing the margin
of separation between the classes. As is well known [1], data appear in the
training problem only through their inner products, so structured data can be
incorporated through task specific kernels such as those proposed here.

For consistency, we adopt the definitions and notation of [7], and the taxon-
omy of [6]. A tree T is a directed, connected, acyclic graph in which each vertex
(node) other than the root has an in-degree of one. The in-degree d−(n) is the
number of edges directed into node n, while the out-degree d+(n) is the number
of edges directed outwards. Any node with out-degree zero is a leaf. Children
of node v are the nodes connected to edges directed out from v, so node v has
d+(v) children. Here, each tree is assumed structured: the children of node v
have a fixed ordering, and can be referenced as ch1(v), . . . , chd+(v)(v).

Tree kernels compute similarity between trees through comparison of their
consituent structures, although there may be differences in the fragments chosen.
Moschitti [6] labelled these choices as Subtrees (STs) and Subset Trees (SSTs).
An ST is simply a node and all of its descendents. An SST need not include
the descendents; if a descendent node v is excluded from the SST, then all of v’s
children are also excluded. The SST is a more general structure, and provides
a domain of potential SSTs whose size is exponential in the number of nodes in
a tree. The size of the ST domain for a given tree is linear with the number of
nodes in the tree, as there is only one possible ST for each node.

The SST kernel originated in NLP studies [2]. The kernel is defined as
K(T1, T2) = h(T1) ·h(T2), where h is an n-dimensional vector of the hi(T) – the
number of occurrences of the i-th SST present in the training data. The vector
h(T) has the potential to be extremely large, but its creation is only implicit
(see below). To compute K, we define N1 and N2 as the set of nodes in T1
and T2 respectively. An indicator function Ii(n), is created to return 1 if the
i-th SST is found rooted at node n, otherwise 0. By traversing the nodes in the
tree, a count of the occurrences of the i-th SST in tree T1 can be calculated as∑
n∈N1

(Ii(n)) i.e. the count of the nodes at which SST i is rooted.

It follows that the kernel can then be calculated by checking each combination
of pairs of nodes between the two trees for matching SSTs according to

K(T1, T2) = h(T1) · h(T2) =
∑
i

hi(T1)hi(T2) =
∑

n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

284

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

To remove the need for the creation of the vector containing all of the SSTs, the
explicit use of the indicator function can be removed by defining a function C
so that ∑

i

Ii(n1)Ii(n2) = C(n1, n2).

Here we will generalise the C(n1, n2) of Moschitti [6], using a parameter σ to
include both SST (σ = 1) and ST (σ = 0) kernels:

C(n1, n2) =

0 n1 6= n2

1 (n1 = n2) ∧ (d+(n1) = d+(n2) = 0)∏d+(n1)
k=1 (σ + C(chk(n1), chk(n2))) otherwise

.

The recursive nature of this function ensures a walk down the nodes in the tree,
increasing the count until mismatching nodes are found. By pre-filling a matrix
of the C(n1, n2) values, the SST kernel can be calculated in O(|N1||N2|) time.
When σ = 0, the subtree kernel, the function will evaluate to zero if any pair of
nodes in the subtree do not match.

3 New Kernels

3.1 Edge Weighted Tree Kernel

This method generalises fragment comparison to encompass soft matching of
edge weights between respective parent and child nodes. Two parent-child pairs
(p1, c1) and (p2, c2) are considered equal if parent nodes are equal (p1 = p2)
, child nodes are equal (c1 = c2) and the edge weights are equal up to some
threshold parameter t: |d(p1, c1)− d(p2, c2)| ≤ t. Evaluation can be introduced
by modifying the third, recursive case in the definition above, so that if n1 and
n2 are the same and are not leaves,

C(n1, n2) =

d+(n1)∏
k=1

(σ +D(n1, chk(n1), n2, chk(n2)))

where

D(p1, c1, p2, c2) =

{
C(c1, c2) if |d(p1, c1)− d(p2, c2)| ≤ t
0 if |d(p1, c1)− d(p2, c2)| > t

Essentially, this modification introduces some tolerance within which we accept
the similarity of the fragments as sufficient, supporting some modest generalisa-
tion of the earlier sructure.

3.2 Path-Spectrum Tree Kernel

Edge weights may be used to assign a cost to each path between a pair of nodes
within the tree. Here we choose to compare the structure of a tree through the
spectrum of weighted paths from root to leaf that exist given the domains of

285

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

node values, edge values and the rules and constraints placed upon relationships
between nodes in a tree. As with string spectrum kernels [5], the Path Spec-
trum Kernel (PSK) allows comparison and identification of important spectral
elements. This work differs from earlier tree measures [3] in considering edge as
well as node values, and in operating over paths rather than tree fragments. The
PSK is usually more efficient than the SST kernels, as the path set is commonly
of far lower cardinality than the fragment set.

Once the spectrum S has been defined, a tree T can be mapped to a feature
vector with the feature map Φ(T) = (φp(T))p∈S , where φp(T) is the number of
times that the path p occurs in T , so that the i-th element of Φ(T) is the count of
occurrences of the i-th path in the tree: Φ(T) = 〈φS1(T) , φS2(T) , . . . , φSn(T)〉.
This vector can be created by traversing the path set and determining the index
of the path within the spectrum, a depth-first-search with linear complexity.
Path comparison has complexity O(D), where D is the maximum tree depth.
After sorting the spectrum elements, searching a spectrum of size S for a path
is an O(D logS) operation, while performing this operation for each path in the
tree is O(PD logS) , where P is the number of leaf nodes (number of paths) in
the tree. As before, the threshold t limits exploration of the spectrum.

4 Experiments

The tree kernels of section 3 were applied to the biological task of gene pro-
moter prediction in bacterial genomes. This section outlines the problem, data,
methods and results obtained using the new kernels with the SVM classifier to
address this task. More details of this task may be found in the supplementary
material at: http://eprints.qut.edu.au/67877.

The promoter prediction problem focuses on binding sites for the σ70 RNAP
complex in E. coli, characterised by specific motifs at (approximately) known
locations (the so-called −10 and −35 hexamers) relative to the Transcription
Start Site (TSS). Additional proteins may be coupled to the complex, each
contributing to the binding process, forming the ‘phrase’ which motivates the
tree kernel approach. Our approach involves a combination of tokens based
on the binding sites for each of the components of the RNAP complex, each
labelled according to their expected location. Valid interactions between element
motifs are shown in figure 1, where edge weights indicate allowable gaps between
motifs (motif constraints). Experiments were conducted with sequences of length
151 base pairs, indexed around a reference nucleotide at position 101. Positive
sequence examples contained an experimentally identified TSS at the reference
position, while negative sequence examples did not (figure 1). In essence, the
aim of the classifier is to determine whether or not the nucleotide at the reference
position is a TSS. Some 609 of the entries available were used to form positive
sequences. Coding region DNA, i.e. that within an identified gene, was used
as the negative data on the basis that a gene coding region should not contain
a TSS. For each TSS site, a set of sequences referred to as the sliding window
sequences was obtained. Each set consists of 201 sequences, each 151bp in length

286

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Fig. 1: Left: Relationships between promoter motifs; nodes are motifs, edges are gaps. Right:
Sequence structure: a) Typical gene structure b) Positive sequence, reference position at true
TSS c),d) Example negative sequences (shifted 5bp downstream, 5bp upstream)

with the reference position being 100bp upstream of the actual TSS for sequence
1, with negative sequences obtained by moving the windows downstream, shifting
the reference position each time. Parse trees were based on the biological rules
and constraints documented in figure 1.

4.1 Results and Discussion

Results are shown below in table 4.1 for the region prediction problem, i.e.
deciding whether or not a sequence contains a true TSS. Baseline performance
is provided by a spectrum kernel [5] seeded with confirmed promoter motifs,
which produces performance fractionally superior to that of [4], at 11.6% error
the best reported for this problem, although variations in data sets make direct
comparison difficult. The mismatch parameter m permits approximate string
matching at the motif level up to m positions. All results are based on ten
fold cross validation repeated ten times. For clarity, variance is not shown but
all standard deviations are well under 5%. The Weighted ST kernel proved

Kernel Method Error Recall Precision

Dictionary m = 1 14.5 83.7 86.9
Dictionary m = 3 8.7 90.5 92.0

Weighted ST −35,−10, t = 0 19.9 71.6 86.2
Weighted PSK Best 600 (Gain Ratio) attributes t = 4 14.4 83.7 87.1
Weighted PSK (with Dictionary; m = 2) 4.75 96.56 94.09
Weighted PSK (with Dictionary; m = 4) 4.02 98.36 93.9

ineffective for this problem, with the simplest structure performing best, but
at levels well under that provided by the dictionary kernel. Application of the
Weighted PSK is far better, but in its most general form it remains inferior to the
simple dictionary approach, the loss of sensitivity due to acceptance of inferior
tokens seemingly outweighing the advantages provided by the phrasal structures.

287

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Efficient use of the path spectrum involves a tradeoff between the cardinality of
the spectrum and its representational effectiveness. Here we used the best 600
paths based on gain ratio. Seeding the lexicon with confirmed motifs as in the
baseline overcame earlier limitations, with performance clearly superior to the
baseline for modest additional computational effort.

5 Conclusions

In this paper we have introduced two new tree kernel methods for phrase like
structures, and demonstrated the effectiveness of the more sophisticated of the
two in an important problem in bioinformatics, producing state of the art results
for region based TSS prediction. Earlier kernel methods [4] provided substantial
advantages over the commonly used position weight matrix predictors [8], [9] –
reducing the FP rate by a factor of more than 20 – but the specialised skills
needed to develop the models and the computational overhead required limited
their direct adoption. Dictionary and tree kernel hybrids such as those intro-
duced here do not depend upon an ensemble and allow the direct insertion of
biological domain knowledge during model creation, thereby allowing frequent
adaptation in response to experimental advances. In forthcoming work, we will
publish the results of these approaches for the location specific inference of the
TSS, and explore their peformance in limiting the false positive results for high
levels of recall which plague the traditional approaches.

References

[1] C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121-167, 1998. ISSN 1384-5810.

[2] M. Collins and N. Duffy. Convolution kernels for natural language. Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2001.

[3] T. Kuboyama, K. Hirata, K. Hisashi, K. Aoki-Kinoshita, and H. Yasuda. A Spectrum Tree
Kernel. Transactions of the Japanese Society for Artificial Intelligence, 22(2), 140-147,
2007.

[4] J.J. Gordon, M.W. Towsey, J.M. Hogan, S.A. Mathews and P. Timms. Improved Predic-
tion of Bacterial Start Sites. Bioinformatics, 22(2), 142-148, 2006.

[5] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a string kernel for svm protein
classification. Pacific Symposium on Biocomputing, 7:566-575, 2002.

[6] A. Moschitti. Making tree kernels practical for natural language learning. Proceedings of
the 11th International Conference of European Association for Computational Linguistics
(EACL), 2006.

[7] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge Uni-
versity Press, 2004.

[8] G. Stormo. DNA binding sites: representation and discovery. Bioinformatics, 16(1), 16-
23, 2000.

[9] TJ. Todt, M. Wels RS. Bongers, RS. Siezen, SAFT. van Hijum, M. Kleerebezem Genome-
Wide Prediction and Validation of Sigma70 Promoters in Lactobacillus plantarum WCFS1
PLOS ONE DOI: 10.1371/journal.pone.0045097, 2012.

[10] Y. Yamanishi, F. Bach, and J.-P. Vert. Glycan classification with tree kernels. Bioinfor-
matics, 23 (10):1211-1216, 2007.

288

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

