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Abstract. The implementation of Machine Learning (ML) algorithms
on stand-alone small-scale devices allows the incorporation of new services
and advanced functionalities without the need of resorting to remote com-
puting systems. Despite having undeniable advantages with respect to
conventional general-purpose devices, e.g. in terms of cost/performance
ratios, small-scale systems suffer of issues related to their resource-limited
nature, like limited battery capacity and processing power. In order to deal
with such limitations, we propose to merge local Rademacher Complex-
ities and bit-based hypothesis spaces to build thrifty models, which can
be effectively implemented on small-scale resource-limited devices. Exper-
iments, carried out on a smartphone in a Human Activity Recognition
application, show the benefits of the proposed approach in terms of model
accuracy and battery duration.

1 Introduction

The learning process consists in aprioristically selecting an appropriate hypoth-
esis space and, then, in choosing the most suitable model from it [1]. These two
steps lead to: an approximation error, depending on the (non-optimal) choice of
the hypothesis space; an estimation error, due to the finite number of available
observations [2]. The approximation and estimation errors have been widely in-
vestigated throughout the last decades and effective theoretical procedures have
been designed to deal with them. When resorting to real-world applications,
however, further constraints arise, related to implementation restrictions. In
small scale learning on resource-limited devices (e.g. smartphones, embedded
systems, etc.), for example, power consumption and thermal dissipation lead to
preferring fixed-point apps to floating-point ones to avoid battery draining or
device overheating [3, 4]. In addition, new challenges in designing the learning
process, such constraints introduce an implementation error, related to the re-
strictions of realizations on real-world devices. The investigation of these aspects
from both a theoretical and a practical point of view is thus necessary to design
procedures, which allow to best cope with these phenomena.

In this paper we deal with issues related to applying learning procedures
in small scale learning on resource-limited devices where a limited number of
bits can be exploited to describe and implement a model. While this problem
has been usually tackled by adapting models to fit computational constraints
a-posteriori (namely, after the learning process concluded), we reverse the per-
spective by acting on the whole learning process, starting from the definition of
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the hypothesis space. For such purposes, we mostly rely on two main pillars, i.e.
two ideas that emerged in recent literature. The first result [5, 6, 7] allows prov-
ing that enhancements can be obtained if the hypothesis space is local: namely,
it consists of only those functions, that are most likely to be chosen by the
learning procedure. The second pillar result [8] shows that exploiting a limited
representation when defining an hypothesis space is equivalent to introducing
regularization in the learning process: in fact, using few bits allows reducing
both noise and the number of functions included in the hypothesis space. In this
work we propose a novel learning procedure based on these pillars: by exploiting
a representation relying on few bits, it allows to describe a limited number of
functions, chosen so to foster locality. The derived advantages are threefold: the
learning process is implicitly regularized by the use of a limited representation;
model performance is improved thanks to the locality of the hypothesis space
and physical/computational constraints hold, as only few bits are exploited.

2 Learning with Limited Resources

In this section, we recall the standard supervised learning framework [5] and,
then, we properly modify it so to introduce the implementation constraints,
typical of small scale learning with resource-limited devices.

Our goal is to approximate the relationship between inputs from a set X and
outputs from a set Y, which is encoded by a fixed, but unknown, probability
distribution μ over X ×Y. The learning algorithm maps a set of labeled samples
Dn = {(X1, Y1), . . . , (Xn, Yn)} to h ∈ H (X ∈ X and Y ∈ Y) and the accuracy
in representing the hidden relationship μ is measured with reference to a loss
function � : Y × Y → [0, 1]. The generalization error L(h) is defined as L(h) =
E(X,Y )�(h(X), Y ), where we assume that each labelled sample is independently
generated according to μ.

Since μ is unknown, we can only compute its empirical estimate, i.e. the
empirical error L̂n(h) =

1
n

∑n
i=1 �(h(Xi), Yi). It is possible to prove that we can

bound L(h) with probability (1− δ), ∀h ∈ H, where H is the hypothesis space,
by using empirical quantities only [5]:

L(h) ≤c1L̂n(h) + c2r
∗ + φ1(δ, n) (1)

r∗ : r = c3R̂n
{
H(∗,h0) : L̂n(h) ≤ 2r

}
+ φ2(δ, n)

where c1, c2, c3 are computable constants, while φ1, φ2 are functions that depend

only on the level of confidence [5]. Moreover, R̂n
{
H(∗,h0) : L̂n(h) ≤ 2r

}
is the

Local Rademacher Complexity (LRC) term, that can be computed as follows:

R̂n
{
H(∗,h0) : L̂n(h) ≤ 2r

}
= Eσ1,...,σn sup

h ∈ H(∗,h0)

L̂n(h) ≤ 2r

2

n

n∑
i=1

σi�(h(Xi), Yi) (2)
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where σ1, . . . , σn are independent uniform {±1}-valued random variables. H(∗,h0)

is the hypothesis space, derived by star–shaping H around h0:

H(∗,h0) = {h0 + α(h− h0) : h ∈ H, α ∈ [0, 1]} (3)

H∗ = H(∗,0) = {αh : h ∈ H, α ∈ [0, 1]} . (4)

The bound of Eq. (2) contemplates only those functions in H that will
be likely chosen by the learning process to assess the performance of a model.
Consequently, according to the Structural Risk Minimization (SRM) principle
[1], we can define a nested series of hypothesis spaces of increasing size H1 ⊆
H2 ⊆ · · · and select:

hopt : arg min
h∈Hi∈{H1⊆H2⊆··· }

c1L̂n(h) + c2r
∗(Hi) + φ1(δ, n). (5)

As a last step, we devote the last part of this section to the introduction
of implementation constraints of real-world applications, as discussed in the
introduction. For this purpose, we exploit the results in [8], by limiting our
analysis to the binary classification case: X ∈ R

d, so that X = x, and Y ∈ {±1},
so that Y = y. H consists of functions, which are parametrized as follows:
h(x) = wTφ(x), φ : Rd → R

D and w ∈ R
D. Moreover, the trimmed hinge loss

�T (h(x), y) = min[1,max[0, 1− yh(x)]] is used as loss function, which allows to
perform regularization in the learning process.

According to the SRM principle, we start by defining the nested series of
hypothesis spaces as H = {w : ‖w‖22 ≤ w2

MAX}, where w2
MAX is the hyperpa-

rameter that adjusts the size of the class of functions. It is worth underlining
thatH is star–shaped around zero by definition, i.e. H = H(∗,0) = H∗. Given the
restrictions of several real-world applications and implementations on resource-
limited devices (e.g. embedded systems, smartphones, biomedical instruments,
etc.), it is often convenient to resort to fixed-point arithmetics, in order to reduce
the computational burden. A (possibly) limited number of bits should be then
used in order to describe the hypothesis space and the functions it includes, for
example by defining the following class of models:

H =

⎧⎨
⎩w :

⎡
⎣ ‖w‖

2
2 ≤ w2

MAX

wj ∈ wMAX

2κ−1 {−2κ + 1, . . . , 2κ − 1}∑D
i=1[wj �= 0] ≤ Dζ

⎤
⎦
⎫⎬
⎭ (6)

where κ is the number of bits. Moreover, a further constraint has been introduced
to select a subset of features (ζ controls the maximum percentage of inputs to
consider): in resource-limited applications, this is of importance to limit the
computational burden by neglecting those features (e.g. sensors signals) that
are of scarce influence on the overall classification process. It is clear that the
size of the hypothesis space is controlled with the hyperparameters wMAX, κ,
and ζ.

As, unfortunately, the class of functions of Eq. (6) is not star–shaped, a
further step is needed, i.e. we can impose star-shaping around zero:

H∗ = {αw : w ∈ H, α ∈ [0, 1]} . (7)
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Thus, we can now reformulate the SRM optimization Problem (5) in order to

exploit H∗. We need to define some further quantities: Φ = [φ(x1)| . . . |φ(xn)]T ,
Y = diag[y1| . . . |yn], an = [a1| . . . |an]T , y = [y1| . . . |yn]T and σ = [σ1| . . . |σn]T .
As we have to compute the two quantities of interest, namely minh∈H L̂n(h)

and R̂n
{
H∗ : L̂n(h) ≤ 2r

}
, the corresponding minimization problem can be

formulated as follows:

min
h∈S, 1n

∑n
i=1 �T (h(xi),yi)≤2r

n∑
i=1

−σi�(h(xi), yi). (8)

In order to compute R̂n
{
H∗ : L̂n(h) ≤ 2r

}
, we have S = H∗; instead, S = H

and σi = −1, ∀i ∈ {1, . . . , n} when we are interested in deriving minh∈H L̂n(h).
Consequently, the overall optimization problem can be formulated as:

min
w,α,ξ

− σT max[0n, min[1n, ξ]], (9)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖w‖22 ≤ w2
MAX

ξ = 1n − αY Φw
w ∈ wMAX

2κ−1 {−2κD + 1D, . . . ,2
κ
D − 1D}

1TD [w �= 0D] ≤ Dζ
1Tn max[0n, min[1n, ξ]] ≤ 2nr

(10)

where α = 1 when searching for minh∈H L̂n(h).
Problem (9) is an NP-problem and, thus, we introduce a further error source,

related to the impossibility of finding its global minimum. Nevertheless, the
hypothesis space is designed so to consist of a limited number of functions, and
thus it can be effectively explored [5]. Then, a good solution can be generally
found by exploiting general purpose optimization tools, such as CPLEX [9], or
the method proposed in [8]. It is worth underlining that Problem (9) is anyhow
more complex to solve than other learning procedures (e.g. models training
with the Support Vector Machine algorithm [1]): in other words, we move the
computational burden to the learning phase, so to keep as light as possible
the feed-forward running phase. This is not unusual where a trade-off between
learning and model complexity is implemented and properly balanced.

3 Results & Discussion

We propose some preliminary results, obtained by applying the previously pre-
sented approach to the Human Activity Recognition on Smartphones (HARoS)
[4, 10] dataset. The latter consists of six classes (1 – walking, 2 – walking up-
stairs, 3 – walking downstairs, 4 – sitting, 5 – standing, 6 – laying): in order to
deal with two-class problems, we applied a One-vs-One (OvO) approach. Model
selection was performed by varying wMAX in the range [10−3, 102] among 10
values, equally spaced in a logarithmic scale; we also tested different values for
κ = {8, 16, 32} and ζ = {0.1, 1}, for which we computed the class complexity r∗
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Table 1: Experimental results on the HARoS dataset.
ζ = 0.1

κ = 8 κ = 16 κ = 32

Empirical error L̂(h), complexity r∗, Test set error L̂T (h)
OvO L̂ r∗ L̂T L̂ r∗ L̂T L̂ r∗ L̂T

1 vs 2 4.06 1.41 9.32 4.06 1.57 9.32 3.90 2.39 9.14
1 vs 3 3.08 3.18 7.24 3.08 3.45 7.24 2.90 3.52 7.60
1 vs 4 0.00 2.22 0.29 0.00 2.99 0.29 0.00 2.99 0.35
1 vs 5 6.98 3.04 9.55 0.02 3.46 0.31 32.29 4.72 34.50
1 vs 6 0.00 4.13 0.00 0.00 5.56 0.00 0.00 8.36 0.00
2 vs 3 4.98 0.49 7.53 4.98 1.40 7.53 4.99 1.40 7.55
2 vs 4 0.01 0.49 0.35 0.01 1.94 0.35 0.00 4.75 0.32
2 vs 5 0.01 0.74 0.12 0.01 2.60 0.12 0.00 5.70 0.13
2 vs 6 0.00 2.29 0.00 0.00 3.50 0.00 0.00 5.69 0.00
3 vs 4 0.01 0.24 0.03 0.01 0.87 0.03 0.00 2.49 0.05
3 vs 5 0.00 0.44 0.00 0.00 0.97 0.00 0.00 3.63 0.00
3 vs 6 0.01 2.51 0.06 0.01 3.80 0.06 0.00 5.10 0.05
4 vs 5 13.40 0.71 17.42 13.40 0.71 17.42 12.81 0.80 16.37
4 vs 6 0.17 3.33 0.00 0.17 3.63 0.00 0.01 6.54 0.00
5 vs 6 0.00 1.63 0.00 0.00 1.83 0.00 0.00 3.60 0.00

Average prediction per seconds and battery life in hours.
Predictions 4100 2700 330
Battery Life 250 180 120

ζ = 1
κ = 8 κ = 16 κ = 32

Empirical error L̂(h), complexity r∗, Test set error L̂T (h)
OvO L̂ r∗ L̂T L̂ r∗ L̂T L̂ r∗ L̂T

1 vs 2 3.90 1.58 9.14 3.90 1.75 9.18 3.90 2.75 9.18
1 vs 3 2.90 3.63 7.60 2.90 3.63 7.60 2.90 3.64 7.60
1 vs 4 0.00 2.75 0.35 0.00 3.16 0.35 0.00 3.75 0.35
1 vs 5 0.00 4.45 0.31 31.95 4.60 33.92 0.00 4.75 0.31
1 vs 6 0.00 7.50 0.00 0.00 8.35 0.00 0.00 8.50 0.00
2 vs 3 4.99 1.38 7.55 4.99 1.42 7.55 4.99 1.58 7.55
2 vs 4 0.00 1.94 0.32 0.00 4.55 0.32 0.00 4.57 0.32
2 vs 5 0.00 0.84 0.13 0.00 4.74 0.13 0.00 5.74 0.13
2 vs 6 0.00 2.29 0.00 0.00 5.62 0.00 0.00 5.64 0.00
3 vs 4 0.00 0.88 0.05 0.00 2.58 0.05 0.00 2.59 0.05
3 vs 5 0.00 1.03 0.00 0.00 4.25 0.00 0.00 4.27 0.00
3 vs 6 0.00 2.45 0.05 0.00 5.22 0.05 0.00 5.23 0.05
4 vs 5 12.81 0.80 16.37 12.80 0.80 16.35 12.80 0.80 16.35
4 vs 6 0.01 3.30 0.00 0.00 6.53 0.00 0.00 6.53 0.00
5 vs 6 0.00 1.48 0.00 0.00 3.82 0.00 0.00 3.82 0.00

Average prediction per seconds and battery life in hours.
Predictions 715 442 67
Battery Life 210 140 90

accordingly. Table 1 reports the empirical error on the training set L̂(h) and on
the test set L̂T (h), in addition to r∗.

Table 1 also presents results showing how performance, in terms of predic-
tions per second and battery life (in hours), changes as κ and ζ are varied: these
results are averaged over the different OvO binary classification problems. These
values were obtained by simulating the HARoS process on a Samsung Galaxy
S II smartphone1, where we implemented both fixed-point (8 and 16 bits) and
floating-point (32 bits) procedures, in accordance with the explored values of
κ. The time needed to perform a prediction was measured as the amount of
milliseconds elapsed between data gathering from sensors and prediction com-
putation. In order to estimate battery duration, instead, we fully charged the
smartphone battery and, then, kept continuously running the application until
a 10% level was reached.

1The smartphone is equipped with a Li-Ion 1650 mAh battery, with up to 610 hours of
stand-by operation time, and mounts Android Gingerbread v2.3.4 operating system.
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By analyzing the results of Table 1, reducing the number of bits emerges as
an appealing method to decrease the complexity of the hypothesis space while, at
the same time, maintaining the capability of the trained models to generalize well
on new and previously unseen data. The use of Local Rademacher Complexity
plays a central role, as it allows to exclude from the hypothesis space those
functions that will not be chosen by the learning procedure. The possibility,
offered by the proposed approach, of more accurately shaping and designing the
class of functions leads to remarkable positive outcomes when dealing with model
accuracy, prediction rate, and battery lifespan in resource-limited devices.
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