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Abstract. Network packet transport services (namely the Internet) are
subject to significant security issues. This paper aims to apply Machine
Learning methods based on Neural Networks (Extreme Learning Machines
or ELM) to analyze the Internet traffic in order to detect specific malicious
activities. This is performed by classifying traffic for a key service run over
the internet: the Domain Name System (DNS). The ELM models and
algorithms are run on DNS traffic data extracted from operating networks
for botnet detection.

1 Introduction

Nowadays telecommunication devices, and especially computers connected to
the Internet, are likely to be the target of malicious activities. According to
[1], 5% to 10% of connected devices are infected with some form of malware.
“Botnets” are one of the most common network security threats. A botnet is a
network of infected computers that are remotely under the control of a hacker.
Botnets are mostly used for illegal activities that require distributed resources.
27% of all malicious connection attempts can be attributed to botnet-related
activities, cf. [2]. In order to put up a fight against botnets, several approaches
have been considered. One of them consists in mining traces of DNS (Domain
Name System [3]) traffic data in order to detect botnet activities. This solution
has been implemented by Exposure [4], a system that employs large-scale, pas-
sive DNS analysis techniques for the detection, as well as in the Notos system [5].
These approaches use different properties of DNS names and the ways they are
queried. Exposure classification methodology for instance is based on decision
trees [6]. Our work differs from these existing solutions in the sense that we base
our classification methodology on Artificial Neural Network models and that we
consider different network features.

This paper is organized as follows. In section 2 we introduce the Internet
DNS traffic dataset used to perform the detection. Then, in section 3, the
structure and basic principles of the Extreme Learning Machines (ELM) method
are presented from a high-level point of view. An ELM-based algorithm is thus
run on the dataset for the task of botnet detection and the results are presented
in section 4. Section 5 concludes the paper.
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2 DNS traffic data

In this section, we describe the Internet DNS traffic data considered to conduct
the botnet detection task. The DNS maps a name (like www.google.com) and
an IP address. The name is also referred to as Fully Qualified Domain Name
(FQDN). Practically it works as follows: an end user queries a DNS server, the
DNS server performs the resolution and returns the mapping to the end user.
The end user is then able to locate and contact the Internet resource wanted.
Our dataset is extracted from raw traffic captures on a DNS resolving platform
acting as a DNS server for the Internet Service Provider Orange. This dataset
is a subset of a day-long traffic capture of about 650 millions of DNS queries.

The network traffic is captured from the DNS server using a packet capture
(pcap) library and stored as .pcap files. A typical DNS packet is divided into
several features, among which we consider: the IP source of the DNS query, an
ID given to the query, a code representing errors that have occurred in the pro-
cess, the FQDN associated with the query, the TTL (i.e. the “Time To Live”)
which represents the time, in seconds, for which the answer is considered valid
and kept in cache, and the IP address sent as the answer to the query. In addi-
tion to these parameters, we consider the time at which events such as querying,
answering and resolution take place, also called “Timestamps”.

The dataset has been constructed from features mentioned above in three
main steps: first, parameters are extracted from each DNS packet. Results are
then grouped and processed to build a table with the FQDN in the first column
and the other parameters in the other columns. Secondly, these FQDN are
labelled as “Black” and “White” using domain name lists. Namely, Black lists
such as Abuse.ch (Zeustracker and SpyEye), Malware Domains and Compuweb,
and the White list dmoz, cf. [7]. The first 12 hours of the 24 hour long traffic
capture is split into 12 equal parts of 1 hour each and only the first 15 minutes
of each part is kept. Finally, the dataset, cf. table 1, is then filtered using the
Black list and White list mentioned above. Because of the strong imbalance
nature of the classification problem, the majority class (White) is downsampled.
All the black-labelled entries are kept, and the white-labelled entries are thus
downsampled to the size of the black-labelled list. The qt, id, ans, eu, rt
and ttl parameters, cf. table 1, are statistical values (number of occurences,
minimum, maximum and quartiles) representing the distributions of the lists of
end user queries.

3 Extreme Learning Machines

The Multi-Layer Perceptron (MLP) model is widely used in Machine Learning.
However, this approach raises issues such as its relatively slow learning speed
and the relatively high number of parameters needed to be tuned. The Extreme
Learning Machines (ELM), a recent learning paradigm, has been developed by
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Name Description
hour indicates at which hour of the day the fqdn queries were

issued
total queries total number of queries issued during the considered pe-

riod
query time (qt) time at which the query has been issued to the DNS

server
id ID of the query

answer (ans) IP address given by the DNS server for the FQDN
end user (eu) IP address of the end user issuing the query

response time (rt) time at which the answer has been given by the DNS
server

time to live (ttl) the time to live of the answer
no error number of times the resolution was successful

error number of times an error has occurred during resolution

Table 1: Dataset.

Huang and coworkers (cf. [8]) in order to deal with these issues. The main
concept behind ELM lies in the random initialization of the incoming weights
and biases of the hidden layer. The structure of an ELM consists in a classic
feedforward layered network with only one hidden layer. This architecture is
called “Single Layer Feedforward Network” (SLFN, as depicted in figure 1). The
ELM model relies on the universal approximation capabilities of feedforward
neural networks (cf. [6]). Furthermore, Huang and Babri showed in [9] that,
with N distinct samples, the SLFN with a number of hidden nodes Ñ < N and
almost any activation function f(.) can learn a model with an arbitrarily small
error. Based on this result, an extremely efficient learning algorithm has been
developed which makes fast learning possible.

Fig. 1: Extreme Learning Machines’ SLFN Architecture.
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The training procedure for ELM can be decomposed in three steps: (i) ran-
dom generation, (ii) propagation, (iii) inversion. The first step (i) consists in
randomly generating the incoming weight matrix W and the bias vector b of the
hidden layer (cf. figure 1). It was shown that the choice of the probability distri-
bution for this random generation does not affect the overall performance of the
network after training. Generating values from a uniform distribution has the
advantage of being fast, simple and implemented in almost every programming
language.
The second step (ii) requires to propagate the input up to the hidden layer to
obtain the hidden layer output matrix H.
The third step (iii) consists in determining β as depicted in figure 1 so that it
minimizes the error between the predicted output Ŷ = Hβ and the target or
expected output T .
This error or cost function is defined as E = ‖Ŷ − T‖ = ‖Hβ − T‖.
β should be a solution of Hβ = T . In practice, zero error cannot be obtained.
However, the aim is to get the error as close to zero as possible. Thus, the optimal
weight matrix β̂ should be a least-squares solution to Hβ = T . Furthermore, to
ensure better generalization performance, β̂ should also have the smallest norm
possible. Such matrix is called the “minimum-norm least-squares solution” of
the equation. This solution is unique and is given by β̂ = H†T where H† is
the Moore-Penrose pseudo-inverse of the hidden layer output matrix H. Also,
this computation can be improved by considering L2-regularization for a Ridge
regression model.
By using this algorithm, a fully trained network is obtained with very few steps
and very low computational cost. This network is usually trained several orders
of magnitude faster than a classical feedforward network with gradient-based
learning.

In our application case, the model takes X ∈ RN×n as an input representing

the N FQDN with their associated n features. W ∈ Rn×Ñ and b ∈ R1×Ñ are
randomly generated. H is computed as H = f(XW + B) where f(.) is the

activation function of the hidden layer (sigmoid in our case) and B ∈ RN×Ñ

having each row equal to b. The target T ∈ {0, 1}N×1 specifies if each FQDN is

“Black” (0) or “White” (1). β ∈ RÑ×1 is computed as H†T (cf. above).

4 Numerical Experiments

This section introduces the numerical experiments performed on the DNS traffic
dataset described in section 2 and measured from the Orange Internet Service
Provider operational network. We run the simulations on a dataset which is
comprised of around 10,000 entries. The input features are normalized (via the
formula Xnorm = (X − Xmean)/(Xmax − Xmean)) to avoid large values from
being overrepresented. All the results are given after a 3-fold cross validation
phase. Furthermore, since the ELM model has randomly generated parameters,
all results are given as averages over 20 trials. The size of the ELM neural net-
work spans the interval {25, 50, 75, 100, 250, 500, 750, 1000} and several feature
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(a) Output distribution. (b) ROC curve.

Fig. 2: Performance measures.

selections are tested. The results are given for the features combination and
the hidden layer size yielding the best performance, according to our a priori
networking expert knowledge. The associated sets of features are also given for
these results.

Experiments performed on 512 different feature combinations showed that
the best performance is obtained with 100 hidden units and with the following
features for the input vector: [hour, ttlmin, ttl25, ttl50, ttl75, ttlmax, no error,
error]. The TTL-related features are a statistical summary of the TTL distri-
bution. The two classes “botnet-related” (Black) and “legitimate” (White) are
respectively represented in the dataset by the values 0 and 1. The distribution
of the network’s outputs is given by figure 2a. The classification threshold used
is equal to 0.7 and the corresponding confusion matrix is given in table 2. The
Receiver Operating Characteristic (ROC) curve is given in figure 2b. The pre-
cision and recall are thus respectively equal to 0.92 and 0.99. The accuracy is
equal to 5.06%, the False Positive rate is equal to 4.36% and the False Negative
rate is equal to 0.7%. This means that there are only 0.7% of false alarms and
that only 4.36% of the botnet-related traffic is not detected by the model. In
addition, the precision and recall values are both high and close to 1, which
means the model performs well on this dataset. The total training time for this
dataset was roughly 13 seconds on average, compared to approximately 2 hours
for MLP to reach the same accuracy level with appropriately tuned values for
the learning rate and momentum term.

5 Conclusion

In this paper we aimed at applying Extreme Learning Machines (ELM) models
for the task of detecting botnet-related activities on the Internet network by
classifying Domain Name System (DNS) traffic. We recalled the main fuinc-
tioning principles of DNS servers and also introduced the dataset we processed
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XXXXXXXXXXPredicted

Actual
White Black

White 1719 155 1874
Black 25 1660 1685

1744 1815 3559

Table 2: Confusion matrix for the dataset.

to perform botnet detection. Our solution is based on ELM models and algo-
rithms which are efficient implementations of single layered feedforward neural
networks. Numerical experiments were presented to validate our proposed ap-
proach. ELM models performed well on the dataset while having a very high
training speed, with performance comparable to other existing botnet detection
solutions.

Future works include not only the improvement of the detection of botnets
related activities on the Internet but also their prevention. In this aim, DNS
reinforcement via name authentication (i.e. its secure extension DNSSEC) is a
promising method for improving overall security.
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