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Abstract. The objective of this paper is to propose to use a new Improved Particle 

Filtering (IPF) based on minimizing Kullback-Leibler divergence for crop models' 

predictions. The performances of the method are compared with those of the 

conventional Particle Filtering (PF) at a complex crop model (AZODYN) to predict an 

important winter-wheat quality criterion, namely the grain protein content.  Furthermore, 

the effect of measurement noise (e.g., different signal-to-noise ratios) on the 

performances of PF and IPF is investigated.  The results of the comparative studies show 

that the IPF provides a significant improvement over the PF because, unlike the PF 

which depends on the choice of sampling distribution used to estimate the posterior 

distribution, the IPF yields an optimum choice of the sampling distribution, which also 

accounts for the observed data. The efficiency of IPF is expressed in terms of estimation 

accuracy (root mean square error). 

 

1. Introduction 

 
Dynamic crop models such as EPIC [1], SALUS [2], and STICS [3] are non-linear 

models that describe the growth and development of a crop interacting with 

environmental factors (soil and climate) and agricultural practices (crop species, 

tillage type, fertilizer amount…). They are developed to predict crop yield and quality 

or to optimize the farming practices in order to satisfy agricultural objectives, as the 

reduction of nitrogen lixiviation. More recently, crop models are used to simulate the 

effects of climate changes on the agricultural production. Nevertheless, the prediction 

errors of these models may be important due to uncertainties in the estimates of initial 

values of the states, in input data, in the parameters, and in the equations. The 

measurements needed to run the model are sometimes not numerous, whereas the 

field spatial variability and the climatic temporal fluctuations over the field may be 

high. The degree of accuracy is therefore difficult to estimate, apart from numerous 

repetitions of measurements. For these reasons, the problem of state/parameter 

estimation represents a key issue in such nonlinear and non-Gaussian crop models 

including a large number of parameters, while measurement noise exists in the data.  

For example, it is useful to predict the evolution of variables, such as the 

biomass and the grain protein content during the crop lifecycle. State estimation 

techniques can be of a great value to solve that problem since they have the potential 

to estimate simultaneously the variables and several parameters. As an example, 

involved parameters are the radiation use efficiency, the maximal value of the ratio of 

intercepted to incident radiation, the coefficient of extinction of radiation, the 

maximal value of LAI.  Several estimation techniques, such as Particle filtering [4] 

method has been developed and utilized in many applications. PF methods 

approximate the posterior probability distribution by a set of weighted samples, called 
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particles. Since real world problems usually involve high dimensional random 

variables with complex uncertainty, the nonparametric and sample-based estimation 

of uncertainty has thus become quite popular to capture and represent the complex 

distribution in nonlinear and non-Gaussian models [5]. PF methods offer a number of 

significant advantages over other conventional methods. However, since they use the 

prior distribution as the importance distribution [6], the latest data observation is not 

considered and not taken into account when evaluating the weights of the particles. 

While the importance sampling distribution has computational advantages, it can 

cause filtering divergence. In cases where the likelihood distribution is too narrow 

compared to the prior distribution, few particles will have significant weights. Hence, 

a better proposal distribution that takes the latest observation data into account is 

needed. In other words, new adaptive methods that incorporate better feedback and 

smoothing in the selection or deletion of particles and their weights need to be 

investigated.  The objectives of this paper are twofold. The first objective is to 

develop an improved Particle filtering (IPF) for improving nonlinear and non-

Gaussian crop model predictions. In case of standard PF, the latest observation is not 

considered for the evaluation of the weights of the particles as the importance 

function is taken to be equal to the prior density function. This choice of importance 

sampling function simplifies the computation but can cause filtering divergence. In 

cases where the likelihood function is too narrow compared to the prior distribution, 

very few particles will have significant weights. Hence, a better proposal distribution 

that takes the latest observation into account is needed. The main novelty of this task 

is to develop new Bayesian algorithm for nonlinear and non-Gaussian state and 

parameter estimation with better proposal distribution based on minimizing Kullback-

Leibler divergence.  The second objective is to apply the state estimation techniques 

PF and IPF for predicting grain protein content. We present an application of the IPF 

for updating predictions of complex nonlinear crop models in order to predict protein 

grain content. The rest of the paper is organized as follows. In Section 2, a description 

of state estimation technique for nonlinear crop model prediction is presented. Then, 

in Section 3, the performances of the state estimation techniques are evaluated and 

compared through the application case. Finally, some concluding remarks are 

presented in Section 4. 

 

2. Improved  Particle  Filtering Description 
 

The choice of optimal proposal function is one of the most critical design issues in 

importance sampling schemes. In [7], the optimal proposal distribution 

 kkk yzzp :01:0 ,ˆ


 is obtained by minimizing the variance of the importance weights 

given the states 1:0 kz and the observations data ky :0 . This selection has also been 

studied by other researchers. However, this optimal choice suffers from one major 

drawback. The particles are sampled from the prior density  1:0 kk zzp  and the 

integral over the new state need to be computed. In the general case, closed form 

analytic expression of the posterior distribution of the state is untractable [8]. 

Therefore, the distribution  1:0 kk zzp  is the most popular choice of proposal 
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distribution. One of its advantages is its simplicity in sampling from the prior 

functions  1:0 kk zzp  and the evaluation of weights 
)(i

kl  (as presented in the 

previous section). However, the latest observation is not considered for the 

computation of the weights of the particles as the importance density is taken to be 

equal to the prior density ([8]). The transition prior  1:0 kk zzp does not take into 

account the current observation data ky , and many particles can be wasted in low 

likelihood areas. This choice of importance sampling function simplifies the 

computational complexity but can cause filtering divergence [8]). In cases where the 

likelihood density is too narrow as compared to the prior function, very few particles 

will have considerable weights. Next, we present an overview of KLD-based 

improved particle filter. 

2.1 Improved Particle Filter based on KLD minimization 

As mentioned above, the distribution of interest for the state takes the form of a 

marginal posterior distribution  kk yzp :0 . The proposed extended Bayesian 

sampling algorithm (also named as improved particle filtering, IPF) is proposed for 

approximating intractable integrals arising in Bayesian statistics. By using a separable 

approximating distribution   )(,ˆ)(ˆ :01:0

i

kikkkk zpyzzpzq    to lower bound 

the marginal likelihood, an analytical approximation to the posterior probability 

 kk yzp :0  is provided by minimizing the Kullback-Leibler divergence (KLD): 

                                                  
 

 


 k

kkk

k

kKL dz
yzzp

zq
zqpqD

:01:0 ,

ˆ
logˆˆ

                           (1) 

              where,           )(ˆ)(ˆ)(ˆ,ˆ)(ˆ
:01:0 kkkkk

i

ik qqzqyzzqzq
k

 
,                               (2) 

k is the expectation of kz  and k  is the covariance matrix of kz . 

Minimizing the KLD subject to the constraint 1)()(  
i

k

i

kikk dzzqdzzq , the 

Lagrange multiplier scheme is used to yield the following approximate distribution, 

 

  
)(ˆ:0 ),(log(exp)(ˆ j

kik zqjkk

i zypEzq


                               (3) 

where  
)(ˆ:0 ),(log( j

ki zqjkk zypE


denotes the expectation operator relative to the 

distribution )(ˆ j

k
zq . Therefore, these dependent parameters can be jointly and 

iteratively updated. Taking into account the separable approximate distribution 

)(ˆ
1

i

k
zq


at time 1k , the posterior distribution )( :0 kk yzp is sequentially 

approximated according to the following scheme: 

                       )(),()()(ˆ
:0 kpkkkkkkk qzpzypyzp                       (4) 

where,                                    
111 )(ˆ)()(  kkkkkp dqpq                                    
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Hence, the particles  N

i

i

k

i

k lz
0

)()(

:0 ,


 (where 
)(i

kl  denotes the importance weight of the 

sample 
)(

:0

i

kz  and N is the total number of the samples) are sampled according to the 

following optimal function: 

kkk

i

kk

i

kkkkk

i

k

i

k ddqzzpzpzzq  )(ˆ)(),(),Ν()(ˆ 1          (5) 

The recursive estimate of the importance weights can be derived as follows: 

                      
)(ˆ
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                                  (6) 

Equation (6) provides a mechanism to sequentially update the importance weights, 

given an appropriate choice of proposal distribution, )(ˆ
:0

)(

:0 k

i

k yzq . Then, the estimate 

of the augmented state kẑ can be approximated by a Monte Carlo scheme as follows: 

      



N

i

i

k

i

kk zlz
0

)()(ˆ                                                         (7) 

3. Simulation Results Analysis 

3.1 Application to a crop model predicting grain protein content 

The AZODYN crop model ([9]) is a nonlinear dynamic model simulating winter-

wheat crop in function of environmental variables (characteristics of the crop at the 

end of winter, soil characteristics, climate) and of nitrogen fertilization (dates and 

rates of fertilizer applications). We consider a particular site-year (2008-2009) This 

model can be used to predict grain yield, soil mineral nitrogen, and grain protein 

content at harvest.  AZODYN is a useful tool for studying the effects of nitrogen 

management on crop yield, grain quality and risk of pollution by nitrate ([10]). Before 

flowering, five state variables are simulated each day by AZODYN: nitrogen uptake 

(NU), dry matter (DM), nitrogen-nutrition index (NNI), leaf-area index (LAI), soil 

mineral nitrogen supply (SNS). We consider chlorophyll-content measurements 

obtained with a chlorophyll meter. These measurements are correlated to one of the 

model state variables, namely nitrogen uptake, and can be easily performed by 

farmers, collecting-firm operators, or farmers’ advisors. Here, we suppose that only 

one chlorophyll-content measurement is performed at flowering and that this 

measurement is linearly related to the model state variables as follows: 

 

                                    
kkk mmm H vxy                                                   (8) 

where 
kmy  and 

kmx   are, respectively, the chlorophyll-content measurement and the 

(5×1) vector of the true state-variable values at flowering,   is an intercept 

parameter, and H  is a one-row matrix defined by )0,0,0,(H  where   is the 

slope of the linear equation relating the measurement to nitrogen uptake. We assume 

that the error term 
kmv  is normally distributed, ),0(~ RNv

km . The IPF is used to 
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update  the five states variables nitrogen uptake (NU), dry matter (DM), nitrogen-

nutrition index (NNI), leaf-area index (LAI), soil mineral nitrogen supply (SNS) 

given a single chlorophyll-content measurement 
kmy  performed at flowering. Yield 

and grain protein content at harvest are then estimated from the updated state 

variables. Eventually, to perform comparison between the techniques, the estimation 

root mean square errors (RMSE) criteria will be used and calculated on the states 

(with respect to the noise free data). 

))ˆ(( 2zzERMSE 
                           

(9)
 

Where z  (resp. ẑ ) is the true parameter/state (resp. the estimated parameter/state). 

Figures 1, 2 and Table 1 show the estimation of the two states variables Yield and 

grain protein content using PF and IPF. The results show the performance of IPF over 

PF, the efficiency of IPF is due to the fact it uses the KLD divergence to compute the 

optimum sampling distribution used to approximate the posterior density function, 

which also accounts for the observed data. 
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Fig. 1: Updated value of grain protein content (kg/ha)        Fig. 2: Updated value of yield (kg/ha) versus N      
(Days) using PF and IPF techniques                                          versus N (days) using PF and IPF techniques. 

                      

    Technique                           ERROR                                       

 Yield grain protein content 

PF 

IPF 

1.0761 

0.4376 

0. 0622 

0.0192 

Table 1: ERROR of estimated states. 

                     

4. Conclusions 

 
In this paper, we developed a state estimation techniques for crop model prediction. In 

the case study, we have used Bayesian methods PF and IPF for updating predictions 

of complex nonlinear crop models. In this case, the proposed IPF is applied at a 

complex crop model (AZODYN) to predict an important winter-wheat quality 
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criterion, namely the grain protein content. The results of the comparative study show 

that the IPF provides a significant improvement over the PF because, unlike the PF 

which depends on the choice of sampling distribution used to estimate the posterior 

distribution, the IPF yields an optimum choice of the sampling distribution, which 

also accounts for the observed data. The performance of PF and IPF is evaluated on a 

synthetic example in terms of estimation accuracy, and root mean square error.  
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