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Abstract. Network-level multi-step road condition forecasting is an im-
portant step in accurate road maintenance planning, where correct mainte-
nance activities are defined in place and time of road networks. Forecasting
methods have developed from engineering models to non-linear machine
learning methods that make use of the collected condition and traffic data
of the road network. Least Squares Support Vector Regression gives sig-
nificantly the best results compared to Radial Basis Function networks or
multiple linear regression.

1 Introduction

Road infrastructure is an import public asset of most of the countries and for
example in case of Finland there are approximately 80 000 kilometres of pub-
lic roads whose estimated balance value was approximately 15 billion euros in
2003 although higher estimates of 37 billion euros have been proposed.[11] The
infrastructure deteriorates over time and the value depreciates unless funds are
allocated on maintenance. In case of Finland annual net maintenance costs
during 2012 were less than 500 million euros. A common problem is that the
maintenance budget is too restricted in order to maintain the roads in adequate
condition.[3] The poorer the road condition is the more road users pay in terms
of increased Vehicle Operating Costs (VOC) as fuel consumption and vehicle
maintenance increase. Overall, annual vehicle-related VOC is estimated to be
20 billion euros in Finland.[7] Percentually small decreases in VOC has thus high
cost impact, but also environmental impact.

Maintenance planning is a procedure to practice predictive maintenance,
where future maintenance operations are allocated on the road network. Ideally,
the total costs to the whole society are minimised by finding correct mainte-
nance treatments on the right road segments on the right time. This requires
forecasting of road condition, cost modelling of the maintenance operations and
spatio-temporal optimisation of the operations.

Although that road condition and traffic data is collected annually from the
road networks by road authorities the methods are not using the full potential
of the collected data as engineering models are used in practice. These models
are often based on just a few variables and parameters that are calibrated to
variable conditions.[6] Our approach is based on nonlinear machine learning
methods making use of the data more thoroughly both spatially as temporally.

The paper introduces the utilised data in Chapter 2, after which the problem
formulation is described in Chapter 3 and computational methods are presented
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in Chapter 4. The forecasting results are given in Chapter 5 that is followed by
the conclusions and discussion in Chapter 6.

2 Description of the data

Road Administration in Finnish Transport Agency collects annually road con-
dition data. However, the collection interval on the same road segment varies
according to the importance of the road and only the most important segments
goes through data collection procedures at least once a year. The spatial distance
of measurement points and the lenght of the aggregated variables vary depend-
ing on the variable, but when the condition data is stored in the road condition
database the variables describing the surface condition used in network-level
planning is averaged to 100 metre long road segments.[10]

When the surface condition of paved roads is concerned, the measured vari-
ables are typically different types of cracking, potholes, ravelling edge break,
roughness and rutting. With the current survey technology the last two vari-
ables have been automatically collected in Finland by profilometres that have
laser beams measuring the distance and thus determining the depth of rutting
and so-called International Roughness Index (IRI). The other variables are col-
lected by visual inspection although there is new technology emerging.[12]

In this study, the data from the road condition database is taken for the whole
Finnish road network administered by Finnish Transport Agency between the
years 2003 and 2010. IRI and rutting are the dependent variables to be fore-
casted. Explanatory variables are: road number, road section, carriageway num-
ber, survey direction, lane, start distance of the segment from the road start,
region, survey day, survey month, survey year, survey season, previously mea-
sured rutting, previously measured IRI, previously mesured left IRI, previously
measured right IRI, previously measured left water rutting, previously measured
right water rutting, ridge, start inclination and end inclination.

IRI describes the road user experience of road condition and it is traditionally
measured by a string in the survey equipment moving vertically due to road
roughness. The variable is measured by how many millimetres the string moves
on 1 metre driven on the road.[8] Rutting is defined as longitudinal depressions
in the wheel paths of asphalt concrete pavements and it is a distance measure.[2]
Currently, the measurements can be done by a laser beam.

The data set covers 8 years of data. The survey time interval varies between
different segments as there can be one or two survey annually or more infre-
quently. Also, maintenance treatments had been taken place on some of the
road segments. Therefore, the data was pre-processed so that 12 separate data
sets were formed so that each set included road segments with equal number of
condition surveys without any maintenance treatments between the first and last
survey. It was noticed that some of the data contained measurement errors and
therefore those segments were deleted that had an absolute difference of more
than 5 mm/m for IRI in each data set. The criterion could be stricter, but as
the study concentrates on comparison of different methods data problems would
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not matter as all the methods face the same issue and therefore comparisons can
be made. Immediate following measurements were excluded from the forecasts
since the results would not have much practical value. The data was normalised
before applying the methods.

3 Problem formulation

Two road condition surveys have been conducted and IRI and rutting have been
measured. The date for both surveys is known, but the values for IRI and rutting
of the latter survey is unknown. The idea is to forecast the condition survey
values of IRI and rutting, y at time t+k. The n explanatory variables include
time-invariable variables, past condition values and the temporal information
that are all denoted by xi at time t. The forecasted values are obtained by some
function f and normal error term, ε is assumed as:

yt+k = f(
n∑

i=1

xit) + εt+k, (1)

4 Methods

4.1 Overview

Both linear and non-linear methods are used for comparison purposes. Previous
value of the forecasted variables are used as the very basic baseline. Linear
regression model is used as another baseline method. The main focus is at non-
linear hybrid methods. Since the amount of data is over 1 200 000 rows in the
biggest set the data sets are first clustered by k-means++ so that each cluster
contains at maximum 12 000 data rows to make it computationally feasible.[1]
For each cluster 10-fold cross-validation was applied so that each time 9/10
part of the data was used for training Radial Basis Function (RBF) and Least
Squares Support Vector Regression (LS-SVR) and 1/10 part of the data was used
for validation. Once this was done for all the 10 data chunks the process was
repeated altogether 5 times. Mean and standard deviation of the Mean Squared
Errors (MSE) were calculated and reported. Overview of the utilised methods is
depicted in Figure 1. Traditionally, mathematical engineering models have been
used for road condition forecasting, where calibration factors had been adjusted
with the help of some explanatory variables so that the model represents a
significant part of the network. That approach does not take into account the
differences between each 100 metre long road segment such as the geometry.
Also much potentially affecting data is excluded.

4.2 Least Squares Support Vector Regression

Instead of a quadratic programming problem of Support Vector Regression
(SVR) a linear system is solved in Least Squares Support Vector Regression
and the regression function takes the form:
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Fig. 1: Overview of the methods.

y(x) =
N∑
i=1

αiK(x, xi) + b (2)

The kernel function K(x, xi) can have several forms, but radial basis function

K(x, xi) = e−
‖x−xi‖22

σ2 is commonly used. Parameters αi and b are solution to:

[
0

−→
1 T

−→
1 Ω + γ−1I

] [
b
α

]
=

[
0
y

]

where y = [y1, ..., yN ],
−→
1 = [1, ..., 1]T , α = [α1, ..., αN ]T and the Mercer condition

Ωkj = ϕ(xk)
Tϕ(xj) and k, j = 1, ..., N .[5]

5 Results

Table 1 summarises forecasting errors of IRI and rutting for the selected meth-
ods. The values are mean values of Mean Square Errors (MSE) of all the cross-
validation runs. Average tandard deviations of the MSE are presented in paren-
thesis. Standard deviation is calculated from all the individual forecasts in case
of the Baseline. Forecasts producing minimum errors are shown as bold.

In case of RBF the radius and number of iterations were selected heuris-
tically to be 5 and 10 respectively. In case of LS-SVR two parameters were
optimised in one data set (t=12) and used with all the sets. The regularisa-
tion parameter,γ for IRI was 4.71 and 5.02 for rutting. In case of RBF kernel
function parameter,σ2 the optimised value was 14.07 for IRI and 4.25 for rut-
ting. Compared methods were the following: M1: No change from the previous
measurement, M2: Linear regression, M3: K-means++ -clustering and Gaussian
RBF for each cluster, M4: K-means++ -clustering and Least Squares Support
Vector Regression for each cluster

According to the results it can be said that linear regression defeats the
baseline and LS-SVR defeats the RBF with the reported problem. Comparison
of the results of the linear regression and RBF it can be seen that RBF outweighs
linear regression in case of rutting with all the other data sets except with t=9.
In case of IRI RBF gives better results than linear regression with t=7, 10, 11,
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Data set M1 M2 M3 M4
2 (IRI) 0.129 (0.70) 0.117 (0.66) 0.186 (0.69) 0.037 (0.17)
2 (RUT) 3.55 (14.1) 2.74 (12.85) 2.59 (8.08) 0.79 (2.74)
3 (IRI) 0.122 (0.67) 0.111 (0.64) 0.256 (0.84) 0.031 (0.15)
3 (RUT) 5.97 (16.12) 3.66 (14.43) 3.26 (8.97) 0.92 (2.81)
4 (IRI) 0.143 (0.68) 0.124 (0.63) 0.155 (0.91) 0.044 (0.21)
4 (RUT) 9.04 (17.91) 4.55 (14.65) 3.89 (9.71) 2.08 (4.86)
5 (IRI) 0.138 0.67) 0.155 (0.91) 0.150 (0.76) 0.034 (0.13)
5 (RUT) 12.07 (19.89) 5.30 (14.83) 4.62 (10.73) 3.14 (8.86)
6 (IRI) 0.161 (0.67) 0.044 (0.21) 0.140 (0.58) 0.046 (0.19)
6 (RUT) 15.26 (22.90) 5.92 (25.60) 5.18 (11.73) 1.42 (3.79)
7 (IRI) 0.150 (0.65) 0.117 (0.49) 0.112 (0.40) 0.040 (0.16)
7 (RUT) 18.04 (25.20) 6.24 (14.57) 5.40 (12.19) 1.45 (4.00)
8 (IRI) 0.161 (0.69) 0.122 (0.50) 0.135 (0.43) 0.048 (0.17)
8 (RUT) 19.77 (25.96) 6.35 (13.54) 5.47 (11.65) 1.55 (4.15)
9 (IRI) 0.168 (0.73) 0.128 (0.54) 0.141 (0.47) 0.051 (0.18)
9 (RUT) 22.20 (28.63) 6.67 (13.46) 6.84 (13.46) 1.67 (4.31)
10 (IRI) 0.187 (0.78) 0.137 (0.57) 0.129 (0.49) 0.059 (0.20)
10 (RUT) 25.39 (32.04) 6.66 (13.26) 5.91 (12.28) 2.06 (4.71)
11 (IRI) 0.218 (0.86) 0.148 (0.54) 0.126 (0.48) 0.073 (0.26)
11 (RUT) 26.39 (34.58) 6.90 (12.93) 6.23 (11.42) 2.09 (5.11)
12 (IRI) 0.270 (1.18) 0.162 (0.43) 0.152 (0.39) 0.099 (0.25)
12 (RUT) 27.31 (38.17) 6.90 (12.91) 6.35 (12.01) 2.08 (4.86)
13 (IRI) 0.411 (1.87) 0.159 (0.36) 0.127 (0.28) 0.070 (0.17)
13 (RUT) 44.07 (51.95) 7.70 (12.49) 5.53 (8.99) 2.88 (5.73)

Table 1: MSE of forecasted IRI values.

12 and 13. Standard deviation of the MSE decrease similarly to the mean MSE.
Increasing number of the data set indicates longer forecasting time horizon in
average and it would be logical to assume decreasing accuracy, but this is not
always the case. One explanation is problems with the surveyed condition data
as the pre-processing criterion was arbitrary as it cannot be surely known, which
values are erroneous.

6 Conclusions

The non-linear methods performed significantly better than the linear ones. In
case of IRI, mean MSE of the best method was between 17 and 37 percent of the
mean MSE for the baseline and between 27 and 66 percent of the mean MSE
for the second best method. In case of rutting the best method performed also
well as the corresponding values were between 6 and 26 percent compared to the
baseline and between 25 and 68 percent compared to the second best method
depending on the data set i.e. the forecasting time step. When compared to
previous study the methods seem to give significantly better results even with
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longer time horizons.[9] Road administrations with historical condition data sets
should switch to non-linear forecasting models since network-level road condition
forecasting is done for planning purposes infrequently and therefore the increased
computation time is not an issue.

Support Vector Regression -based methods are a luring option for forecast-
ing since domain-specific knowledge is not needed in model creation. Better
results could probably be achieved by using different clustering and optimising
the parameters for each data sets separately.

Besides Finland the methods are applicable to road networks of other coun-
tries with collected condition, location and other data. Besides road networks
the methods can be applied to predictive maintenance of other infrastructure
assets, where condition is monitored systematically.
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