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Abstract. The multi-objective, multi-armed bandits (MOMABs) problem is a
Markov decision process with stochastic rewards. Each arm generates a vector of
rewards instead of a single reward and these multiple rewards might be conflicting.
The agent has a set of optimal arms and the agent’s goal is not only finding the
optimal arms, but also playing them fairly. To find the optimal arm set, the agent
uses a linear scalarized (LS) function which converts the multi-objective arms into
one-objective arms. LS function is simple, however it can not find all the optimal
arm set. As a result, we extend knowledge gradient (KG) policy to LS function. We
propose two variants of linear scalarized-KG, LS-KG across arms and dimensions.
We experimentally compare the two variant, LS-KG across arms finds the optimal
arm set, while LS-KG across dimensions plays fairly the optimal arms.

1 INTRODUCTION

The one-objective, Multi-Armed Bandits (MABs) is a sequential Markov decision pro-
cess where an agent tries to optimize its decisions while improving its knowledge con-
cerning the arms among which it has to pull. At each time step t, the agent pulls one
from the available arms set A and receives a reward signal. That reward is independent
from the past rewards of the pulled arm and from all other arms. The rewards from arm
i are drawn from a normal distribution N(µi, σ

2
i ) with mean µi and variance σ2

i .
The goal of the agent is to find the best arm i∗ which has the maximum mean

µ∗ = maxi=1,··· ,|A| µi to minimize the loss, or total expected regret, RL, RL =

Lµ∗ −
∑L
t=1 µi(t) of not pulling the best arm i∗ all the time. Where L is a fixed

number of time steps and µi(t) is the mean of the selected arm i at time step t.
However, the mean µi and variance σ2

i parameters are unknown to the agent. Thus,
by pulling each arm, the agent improves its estimates µ̂i and σ̂2

i of the true mean µi and
the variance σ2

i , respectively. To find the optimal arm as soon as possible, the agent has
several policies, e.g. Knowledge Gradient (KG) policy [1]. Intuitively, KG policy finds
the optimal arm by adding a bonus to the estimated mean of each arm i and selects the
arm that has the maximum estimated mean plus the bonus.

In this paper, we extend KG policy to the Multi-Objective, Multi-Armed Bandits
problem (MOMABs). In the Multi-Objective (MO) setting, there is a set of Pareto
optimal arms that are incomparable, i.e. can not be ordered using a designed partial
order relationship. The Pareto optimal arm set (Pareto front set) can be found by using
Linear Scalarized (LS) function which converts the MO space to a single-objective
space, i.e. the mean vectors are transformed into scalar values [2]. The LS function is
simple but cannot find all the optimal arms when the mean vector set of the Pareto front
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set is a non-convex (concave) set. As a result, we extend KG policy to be used in linear
scalarization function to find the optimal arms in a concave mean vector set.

This paper is organized as follows: first, we give background information on the
algorithm used (Section 2). We introduce the MOMABs, we propose two variants of
the linear KG scalarization functions: linear scalarized-KG across arms and dimensions
and we present scalarized multi-objective bandits. (Section 3). We describe the experi-
mental set up followed by the experimental results (Section 4). Finally, we conclude.

2 Background

Here, we introduce LS function and regret measures for the MOMABs problem.
Let us consider MOMABs problems with number of arms |A|, |A| ≥ 2 arms and

with D objectives (dimensions) per arm. The mean vector of the rewards of arm i,
1 ≤ i ≤ |A|, is µµµi = (µ1

i , · · · , µDi )T , where T is the transpose. Each objective d,
1 ≤ d ≤ D, has a specific value and the objectives might be conflicting with each
other. This means that the reward of arm i corresponding with one objective can be
better but for another objective can be worse than that for another arm j.

Linear Scalarized (LS) Function converts the MO into a one-objective [2]. However,
solving a MO optimization problem means finding the Pareto front set. Thus, we need a
set of scalarized functions S to generate the variety of elements belonging to the Pareto
front set. LS function assigns to each value µdi of the mean vector µµµi of arm i a weight
wd and the result is the sum of these weighted mean values. The LS function f is
defined as:

f j(µµµi) = w1µ1
i + · · ·+ wDµDi (1)

where f j is a linear function with scalarization j, j ∈ S. Each j has a different set of
predefined weightswwwj = (w1, · · · , wD), such that

∑D
d=1 w

d = 1. Linear scalarization
is very popular because of its simplicity. However, it cannot find all the arms in the
Pareto optimal arm set A∗ if its corresponding mean set is a concave set. After trans-
forming the multi-objective problem to a single-objective one, the LS function selects
the arm i∗ that has the maximum function value, i.e. i∗ = argmax1≤i≤A f j(µiµiµi).

Regret Metrics. To measure the performance of the LS function, [3] have proposed
two regret metric criteria. The scalarized regret metric measures the distance between
the maximum value of a scalarized function and the scalarized value of an arm that is
pulled at time step t. Scalarized regret is the difference between the maximum value for
a LS function f j on the set of armsA and the scalarized value for an arm k that is pulled
by the scalarized f j at time step t, Rscalarizedj (t) = max1≤i≤A f

j(µiµiµi)− f j(µkµkµk)(t).
The unfairness regret metric is related to the variance in drawing all the optimal

arms which is the variance of the times the arms in A∗ are pulled: Runfairness(t) =
1
|A∗|

∑
i∗∈A∗(Ni∗(t)−N|A∗|(t))

2, whereRunfairness(t) is the unfairness regret at time
step t, |A∗| is the number of optimal arms, Ni∗(t) is the number of times an optimal
arm i∗ has been selected at time step t and N|A∗|(t) is the number of times the optimal
arms, i∗ = 1, · · · , |A∗| have been selected at time step t.

Knowledge Gradient (KG) Policy is an index policy that determines for each arm i
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the index V KGi as follows [1]:

V KGi = ˆ̄σi ∗ x(−|
µ̂i − max

j 6=i,j∈|A|
µ̂j

ˆ̄σi
|) (2)

where ˆ̄σi = σ̂i/Ni is the Root Mean Square Error (RMSE) of the estimated mean µ̂i of
arm i. The function x(ζ) = ζΦ(ζ)+φ(ζ) where Φ and φ are the cumulative distribution
and density of the standard normal distribution N(0, 1), respectively. KG chooses the
arm i∗KG with the largest V KGi , i.e. i∗KG = argmaxi∈|A|

(
µ̂i + (L− t)V KGi

)
where L

is the horizon of experiment. KG policy prefers those arms about which comparatively
little is known. These arms are the ones whose distributions around the estimate mean
µ̂i have larger estimated variance σ̂2

i . Thus, KG prefers an arm i over its alternatives if
its confidence in the estimate mean µ̂i is low. In [5], it is shown that KG policy outper-
forms other policies on the one-objective MABs in terms of the average frequency of
optimal selection performance. Moreover, the KG-policy does not have any parameter
to be tuned. For these reasons, we extend it to scalarized multi-objective KG.

3 MOMAB Framework

In this section, we present linear scalarized knowledge gradient (scalarized-KG) func-
tions. Linear scalarized-KG functions make use of the estimated mean and variance.

At each time step t, the agent selects one arm i and receives a reward vector. The re-
ward vector is drawn from a normal distributionN(µµµi,σσσ

2
i ), whereµµµi = (µ1

i , · · · , µDi )T

is the mean vector and σσσ2
i = (σ2

1i, · · · , µ2
Di)

T is the diagonal covariance matrix of arm
i since the reward distributions corresponding with different arms are assumed to be
independent. These parameters are unknown to the agent. But by drawing arm i, the
agent can update its estimates µ̂̂µ̂µi and σ̂̂σ̂σ2

i in each dimension d as follows [4]:

Nit+1 = Nit + 1, µ̂dt+1 = (1− 1

Nit+1

) µ̂dt +
1

Nit+1

rdt+1 (3)

σ̂2
d(t+1) =

Nit+1 − 2

Nit+1 − 1
σ̂2
dt +

1

Nit+1

(rdt+1 − µ̂dt )2 (4)

where rdt+1 is the collected reward from arm i in the dimension d, Nit+1 is the updated
number of times arm i has been selected, µ̂dt+1, and σ̂2

d(t+1) are the updated estimated
mean and covariance of arm i for dimension d, respectively.

Linear Scalarized-KG across Arms, (LS1-KG) converts immediately the MO es-
timated mean µ̂̂µ̂µi and estimated variance σ̂̂σ̂σ2

i of each arm to one-dimension, then com-
putes the corresponding bound ExpBi. We use σ̂̂σ̂σ2

i to refer to the estimated variance
vector of arm i. At each time step t, LS1-KG weighs both the estimated mean vector,
i.e. ([µ̂1

i , · · · , µ̂Di ]T ) and estimated variance vector, i.e. ([σ̂2
1i, · · · , σ̂2

Di]
T ) of each arm

i, converts the MO vectors to one-objective values by summing the elements of each
vector. Thus, we have one-dimension, MABs. KG calculates for each arm, a bound
which depends on all other arms and selects the arm that has the maximum estimated
mean plus bound. The LS1-KG is as follows:

µ̃i = f j(µ̂i) = w1µ̂1
i + · · ·+ wDµ̂Di , σ̃

2
i = f j(σ̂2

i ) = w1σ̂2
1i + · · ·+ wDσ̂2

Di ∀i
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˜̄σ2
i = σ̃

2
i/Ni, vi = ˜̄σi x(−|

µ̃i − max
j 6=i, j∈A

µ̃j˜̄σi |) ∀i (5)

where f j is a LS function that has a predefined set of weight (w1, · · · , wD)j . µ̃i and
σ̃2
i are the modified estimated mean and variance of an arm i, respectively which are

values. ˜̄σ2
i is the RMSE of an arm i. vi is the KG index of an arm i. LS1-KG selects

the optimal arm i∗ according to:

i∗LS1KG = argmaxi∈|A|(µ̃i + ExpBi) = argmaxi∈|A|(µ̃i + (L− t) ∗ |A|D ∗ vi)

where ExpBi is the bound of arm i and D is the number of dimensions.
Linear scalarized-KG across dimensions, (LS2-KG) computes the bound vector

ExpBExpBExpBi for each arm, i.e. ExpBExpBExpBi = [ExpB1
i , · · · , ExpBDi ], adds the ExpBExpBExpBi to the

corresponding estimated mean vector µ̂̂µ̂µi, then converts the multi-objective problem to
one-objective. At each time step t, LS2-KG computes bounds for all dimensions of
each arm, sums the estimated mean in each dimension with its corresponding bound,
weighs each dimension, then converts the multi-dimension to one-dimension value by
taking the summation over each vector of each arm. LS2-KG is as follows:

f j(µ̂i) = w1(µ̂1
i + ExpB1

i ) + · · ·+ wD(µ̂Di + ExpBDi ) ∀i, where (6)

ExpBdi = (L− t) ∗ |A|D ∗ vdi , vdi = ˆ̄σdi x(−|
µ̂di − max

j 6=i, j∈A
µ̂dj

ˆ̄σdi
|) ∀d∈D

vdi , µ̂di , ˆ̄σdi , and ExpBdi are the index, the estimated mean, the RMSE, and the bound
of arm i for dimension d, respectively. LS2-KG selects the optimal arm i∗ that has
maximum f j(µ̂i), i.e. i∗LS2KG

= argmaxi=1,··· ,|A| f
j(µ̂i).

1. Input:length of trajectory L;type of scalarized function f;
set of scalarized function S = (f1, · · · , fS);reward rd ∼ N(µ, σ2

r).
2. Initialize: For s = 1 to S

play each arm Initial steps;observe(rrri)
s;update:Ns

i ;(µ̂̂µ̂µi)
s;(σ̂̂σ̂σi)

s

End
3. Repeat
4. Select: a function s ∈ S uniformly, at random
5. Select: the optimal arm i∗ that maximizes fs

6. Observe: reward vector rrri∗, rrri∗ = [r1i∗ , · · · , rDi∗ ]
T

7. Update: Ns
i∗;µ̂̂µ̂µi∗;σ̂̂σ̂σi∗

8. Compute: unfairness regret;scalarized regret
9. Until L
10. Output: Unfairness regret;scalarized regret.

Fig. 1: Algorithm:(Scalarized multi-objective function).

The scalarized multi-objectieve bandits, The pseudocode of the scalarized MOMAB
problems is given in Figure 1. Given the type of the scalarized function f , (f is either
LS1-KG or LS2-KG) and the scalarized function set (f1, · · · , fS) where each scalar-
ized function fs has different weight set,wwws = (w1,s, · · · , wD,s).
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The algorithm in Figure 1 plays each arm of each scalarized function fs, Initial
plays (step: 2). Ns

i is the number of times the arm i under the scalarized function fs

is pulled. (rrri)
s is the reward vector of the pulled arm i which is drawn from a normal

distribution N(µµµ,σσσ2
r) where µµµ is the mean vector and σσσ2

r is the variance vector of the
reward. (µ̂̂µ̂µi)

s and (σ̂̂σ̂σi)
s are the estimated mean and standard deviation vectors of the

arm i under the scalarized function s, respectively. After initial playing, the algorithm
chooses uniformly at random one of the scalarized function (step: 4), selects the opti-
mal arm i∗ that maximizes the type of this scalarized function (step: 5), simulates the
selected arm i∗, and updates Ns, (µ̂̂µ̂µi)

s and (σ̂̂σ̂σi)
s (step: 7). This procedure is repeated

until the end of playing L steps. Note that the proposed algorithm is an adapted version
from [3], but here the algorithm can be applied to KG with normal reward distribution.

4 Experiments

We experimentally compare the linear scalarized-KG variants across arms and dimen-
sions of KG, Section 3 on MOMABs with concave mean vector arm set. The perfor-
mance measures are: 1) The average number of times optimal arms are pulled and the
average number of times each of the optimal arms is drawn which are the average of M
experiments. 2) The scalarized and the unfairness average regret, Section 2 at each time
step which are the average of M experiments. The number of experiments M and the
horizon of each experiment L are 1000. The rewards of each arm i in each dimension
d, d ∈ D are drawn from normal distribution N(µµµi,σσσ

2
i,r) where µµµi = [µ1

i , · · · , µDi ]T

is the mean and σσσ2
i,r = [σ1,2

i,r , · · · , σ
D,2
i,r ]T is the variance of the reward. The variance

for arms in each dimension is equal to 0.012. The mean for arms in each dimension is
∈ [0, 1]. The means and the variances of arms are unknown parameters to the agent. KG
needs the estimated variance for each arm, σ̂2

i , therefore, each arm is played initially
Initial, Initial ≥ 2 times to estimate the variance. The number of Pareto optimal
arms |A∗| is unknown to the agent, therefore, |A∗| = |A|.

Table 1: Average number of times optimal arms are pulled and average number of times
each one of the optimal arm is pulled performances on concave 2-objective, 6-armed.

Functions A∗ a∗
1 a∗

2 a∗
3 a∗

4
LS1-KG 999.9 ± .04 222 ± 9.7 122.6 ± 7.4 301.5 ± 14.4 353.8 ± 12.2

LS2-KG 999.7 ± .33 368.2 ± 17.6 303.1 ± 18.2 96 ± 9.3 232.4 ± 8.5

Experiment 1: We use the same example in [3] that contains concave mean set with
|A| = 6 andD = 2. The true mean set vector is (µµµ1 = [0.55, 0.5]T ,µµµ2 = [0.53, 0.51]T ,
µµµ3 = [0.52, 0.54]T ,µµµ4 = [0.5, 0.57]T ,µµµ5 = [0.51, 0.51]T ,µµµ6 = [0.5, 0.5]T ). Note that
the Pareto optimal arm (Pareto front) set is A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to the

optimal arm i∗. The suboptimal a5 is not dominated by the two optimal arms a∗1 and
a∗4, but a∗2 and a∗3 dominates a5 while a6 is dominated by all the other mean vectors.
We consider 11 weight sets, i.e. w = {(1, 0)T , (0.9, 0.1)T , · · · , (0.1, 0.9)T , (0, 1)T }.

Table 1 gives the average number ± the upper and lower bounds of the confidence
interval that the optimal arms are selected in column A∗, and one of the optimal arm
a∗ is pulled in columns a∗1, a∗2, a∗3, and a∗4 using the scalarized functions in column
Functions. Table 1 shows KG policy is able to explore all the optimal arms. LS1-KG
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performs better than LS2-KG in selecting and playing fairly the optimal arms. LS1-KG
prefers the optimal arm a∗4, while LS2-KG prefers the optimal arm a∗1.

Increasing Arms and Dimensions: In order to compare the variants linear scalarized-
KG performances on a more complex MOMABs problem, We add another 14 arms and
another 3 dimensions in Experiment 1, resulting 5-objective, 20-armed. The Pareto op-
timal set of arms A∗ contains now 7 arms. We used 11 set of weights, w. Figure 2 gives
the average scalarized and unfairness regret performances. The x-axis is the horizon
of each experiment. The y-axis is either the average of the scalarized or the unfairness
regret performance which is the average of 1000 experiments. Figure 2 shows LS1-
KG performs better than LS2-KG according to the scalarized regret performance, while
LS2-KG performs better than LS1-KG according to the unfairness regret performance.

Fig. 2: Performance on 5-objective, 20-armed with |A∗| = 7. Left sub-figure shows the
scalarized regret. Right sub-figure shows the unfairness regret.

5 Conclusions

We presented MOMABs problem, linear scalarized LS function, the scalarized regret
measures and KG policy. We extended KG policy to the MOMABs. We proposed two
types of LS-KG (LS-KG across arms (LS1-KG) and dimensions (LS2-KG)). Finally,
we compared LS1-KG, and LS2-KG and concluded that: 1) KG policy is able to find
the Pareto optimal arms set in a concave mean vector set. 2) when the number of arms
and dimensions are increased LS1-KG outperforms LS2-KG according to the scalarized
regret, while LS2-KG outperforms LS1-KG according to the unfairness regret.
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