ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

On the complexity of shallow and deep
neural network classifiers

Monica Bianchini and Franco Scarselli

Department of Information Engineering and Mathematics
University of Siena
Via Roma 56, 1-53100, Siena, ITALY

Abstract. Recently, deep networks were proved to be more effective than
shallow architectures to face complex real-world applications. However,
theoretical results supporting this claim are still few and incomplete. In
this paper, we propose a new topological measure to study how the depth
of feedforward networks impacts on their ability of implementing high
complexity functions. Upper and lower bounds on network complexity are
established, based on the number of hidden units and on their activation
functions, showing that deep architectures are able, with the same number
of resources, to address more difficult classification problems.

1 Introduction

Recently, there has been a substantial growth of interest in feedforward neural
networks with many layers [1, 2, 3]. The main idea underlying this research is
that, even if shallow networks are more commonly used, it is advisable to use
deep architectures to solve complex Al problems (as, e.g., in image analysis or
language understanding [4]).

Nevertheless, from a theoretical point of view, the advantages of deep archi-
tectures are not yet completely understood. The existing results are limited to
neural networks with boolean inputs, implementing logical gates or threshold
activations, and to sum—product networks [5, 6]. Unfortunately, such results
cannot be extended to common networks, with sigmoidal activation functions.

Intuitively, an important limitation is that no measure is currently available
to evaluate the complexity of the functions implemented by neural networks.
In fact, the claim that deep networks can solve more complex problems can be
reformulated as “deep networks can implement functions with higher complexity
than shallow ones, when using the same number of resources.”

In this paper, we propose to exploit some concepts coming from topology
theory in order to design a measure of function complexity that can be applied
to neural networks, used in the classification framework. Moreover, we present
some upper and lower bounds derived using such a measure. These results allow
us to compare deep and shallow networks, showing that the former have some
theoretical advantages over the latter. An intuitive explanation of the possible
advantages of deep architectures is also provided.

The paper is organized as follows. Section 2 presents the main theoretical
results, whose proofs, omitted here for space limitations, can be found in [7].
In Section 3, such results are discussed and compared with the state—of-the-art
achievements. Finally, conclusions are drawn in Section 4.

371

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

2 Theoretical results

Let far : IR" — IR be the function implemented by a feedforward neural network
N, with n inputs and a single output. We will measure the complexity of the
function far by the topological complexity of the set Sy = { € IR"| far(x) > 0}.
Such an approach is natural when the network N is used for classification since,
in this case, Sxr is just the set of inputs scored with a non-—negative response,
i.e., the set of patterns belonging to the positive class.

To this aim, we will exploit the concept of Betti numbers [8]. In algebraic
topology, Betti numbers are used to distinguish spaces with different topological
properties. More precisely, for any subset S C IR", there exist n Betti numbers!,
denoted by b;(S), 0 < i <n — 1. Intuitively, the first Betti number by(S) is the
number of connected components of the set S, while the i—th Betti number
b;i(S) counts the number of (i + 1)-dimensional holes in S. For example, let
us consider the four subsets Sgr,Sp,Sp,Sr in IR?, representing the character
strings “BI”, “B”, “D” and “I”, respectively. All the subsets are constituted
by a single connected component except for Spy, which has two components.
Thus, bo(SB) = b()(SD> = bo(S]) =1 and bo(SB[) = 2. MOI‘GOVGI‘, b1<SB[) =
b1(Sp) = 2, b1(Sp) = 1 and b1(S7) = 0, because Spr and Sp contain two (2
dimensional) holes, Sp contains one hole and S; has no hole, respectively. For
an example in IR3, let us compare a sphere, Sy, and a torus, S; (see Fig. 1). We
can observe that both of them have a single connected component and contain a
3-dimensional hole (i.e., by(Sy) = ba(Sx) = bo(S;) = ba(S-) = 1). On the other
hand, the sphere contains a single 2-dimensional hole, defined by any circle on
its surface, whereas the torus has two 2—dimensional holes, the one in the center
and the one in the middle of the “tube” (i.e., b1(Sx) = 1, b1(S;) = 2). Thus,
Betti numbers capture a topological notion of complexity that can be used to
compare subspaces of IR". In the examples, we can assert that Sp; is more
complex than Spg, that Sp is more complex than Sp, and that the torus is more
complex than the sphere.

Fig. 1: A three dimensional sphere and a torus.

More precisely, the complexity of a space S is often measured by the sum
B(S) of the Betti numbers, i.e., by B(S) =), b;(S). Following this idea, the
sum of the Betti numbers B(Sxs) of the region Sxr, which contains the patterns
positively classified by a feedforward neural network N, can be studied in order

LFormally, b;(S) is defined for any i > 0, but b;(S) = 0 for i > n.

372

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

| Inputs [Hidden layers [Activation function [Bound ‘

Upper bounds

n 1 threshold O(h™)

n 1 arctan O((n +h)" ")

n 1 polynomial, degree r 2+ +n)" T

1 1 arctan h

n many arctan 2"CR=DO((nl + n)"T2")

n many tanh 2R=IN20((nl 4 n)"*r)

n many polynomial, degree r 12+r)A+r)" T
Lower bounds

n 1 any sigmoid (=)

n many any sigmoid 2i=T

n many polynomial, deg. r > 2 o1

Table 1: Upper and lower bounds on the growth of B(Sys), for networks with
h hidden neurons, n inputs, and [hidden layers. Architecture with many layers
will be called deep, architectures with one hidden layer will be called shallow.

to understand how it is affected by the architecture of A/, i.e. based on being N
deep or not. In this paper, we provide some upper and lower bounds on B(Syr)
for multilayer networks, varying the network architecture and the activation
function of the hidden neurons. Formally, the existence of a lower bound L
for a class of networks implies that, for at least one network A, belonging to
the considered class, B(Sxr) > L holds, while an upper bound U is such if
B(Snr) < U for all the networks in the class.

More precisely, networks are supposed to have a single output unit with
a linear activation. Different activation functions for the hidden neurons are
considered: the inverse tangent, arctan(a) = tan~!(a), the hyperbolic tangent,
tanh(a) = (e® — e~ %)/(e® + e~ %) and polynomial functions.

The obtained upper and lower bounds on the growth of B(Sy) are reported
in Table 1 (see [7], for more details and proofs). Each row of the table shows
a bound for a given architecture, where [is the number of hidden layers, h the
total number of hidden neurons in all the layers, and n the number of inputs.
Moreover, the common big O notation is used to describe the limit behaviour
of B(Sxr). Interestingly, a general result, collected in the following two proposi-
tions, seems to emerge from the above bounds. Intuitively, it suggests that deep
networks have the capability of implementing more complex sets than shallow
ones.

Proposition 1 For network architectures with a single hidden layer, the sum of
the Betti numbers, B(Sxr), grows at most polynomially with respect to the number
of the hidden units h, i.e., B(Sy) € O(h™), where n is the input dimension.

Proposition 2 For deep networks, B(Sxr) can grow exponentially in the number
of the hidden units, i.e. B(Sy) € Q(2").

Actually, the above propositions have been proved only for networks with some
specific activation functions. In fact, by simplifying the bounds in Table 1, both

373

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

the claims are proved for polynomial activation functions: B(Sxr) is O(r™), for
shallow networks, and it ranges between 2(22") and O(2"") for deep networks.
Moreover, both claims are also demonstrated for networks using arctan(-): B(Sy)
ranges between Q((h/n)") and O((n+ h)"2) in shallow networks, and between

Q(22") and 0(4"2 (nh)"+2") in deep networks. Finally, Proposition 2 holds for
generic sigmoid activation functions?: in this case, the lower bound is O(22").
For the sake of clarity, it is worth pointing out that we do not know whether
the two propositions hold for all the commonly used activation functions: the
presented results are non conclusive and leave open interesting avenues of inves-
tigation for future work. For instance, Proposition 1 has not been proved for
networks with the hyperbolic tangent function. Interestingly, as discussed in [7],
the extension of such results actually may require significant advancements in
algebraic topology, related to some important and still unsolved problems.

3 Related literature and discussion

The multilayer networks’ ability of approximating any continuous map, up to any
degree of precision, was established during the early 90’s. After that, this prop-
erty was extended in several ways [9], considering networks with very generic
neurons (e.g., with analytic activation functions), expanding the class of ap-
proximable maps (e.g., to integrable functions), considering non-static networks
(e.g., recurrent [10], recursive [11] and graph neural networks [12]), and provid-
ing upper bounds on the rate of approximation w.r.t. the number of neurons
(e.g., see [13]). Unfortunately, such results do not allow to distinguish between
deep and shallow architectures, since they are based on properties which are
inherited from simple to more complicated architectures, instead of evidencing
distinguishing features.

On the other hand, researchers in the field of logic networks have actually
pursued the goal of defining the effect of the network depth on the amount
of resources required to implement a given function. In this ambit, it has been
shown that there exist boolean functions, whose realization requires a polynomial
number of logic gates (AND, OR, NOT) using a network with [layers, whereas
an exponential number of gates is needed for a smaller number of layers [14].
A well-known function of this class is the parity function, which requires an
exponential number of gates (in the number of inputs), if the network has two
layers, whereas it can be implemented by a linear number of logic gates, if a
logarithmic number of layers (in the input dimension) are employed.

In [5], deep and shallow sum-product networks® were compared, using two
classes of functions. Their implementation by deep sum—product networks re-
quires a linear number of neurons with respect to the input dimension n and
the network depth I, whereas a two-layer network needs at least O(2v™) and
O((n — 1)!) neurons, respectively. Finally, similar results were obtained for
weighed threshold circuits*. For example, it has been proved that there are

2A sigmoid is a monotone increasing function having left and right limits.

3 A sum-product network consists of neurons that either compute the product or a weighted
sum of their inputs.

4Thresholds circuits are multilayer networks with threshold activation functions, i.e., o(a) =
1,ifa >0, and o(a) =0, if a < 0.

374

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

monotone functions fj that can be computed with depth k and a linear number
of logic (AND, OR) gates, but they require an exponential number of gates to
be computed by a weighed threshold circuit with depth k& — 1 [15].

The above mentioned results, however, cannot be applied directly to common
BackPropagation networks. In this sense, as far as we know, the results reported
here are the first attempt to compare deep and shallow architectures, that exploit
the common tanh(-) and arctan(-) activation functions.

Interestingly, the presented results are also related to Vapnik—Chervonenkis
dimension (VC-dim). In fact, the VC—dim has been proved to be O(p?), for
networks with arctan(-) and tanh(-) activation, where p is the number of pa-
rameters [16]. Thus, the VC—dim is polynomial with respect to the number of
parameters and, as a consequence, it is polynomial also in the number of hidden
units. These bounds do not depend on the number of layers in the network,
suggesting that, in practice, the depth of a network has a larger impact on the
complexity of the implemented function than on its generalization capability. In
other words, using the same amount of resources, deep networks are able to face
more complex applications without loosing in generalization.

Finally, let us provide an intuitive explanation of the possible advantages of
deep architectures. First, notice that the k—th hidden layer of a feedforward
network realizes a function that correlates the outputs of the neurons in layer
k — 1 with the inputs of the neurons in layer £ + 1. Such a correlation can be
represented as a map, so that the global function implemented by a deep network
results in a composition of several maps, whose number depends on the number
of its hidden layers. On the other hand, the function composition mechanism
intuitively allows “to replicate the same behaviour on different regions of the
input space.” Without providing a formal definition of such a statement, let us
illustrate this concept with an example. Consider the composition f = g o t,
with g : D — IR, t : D — D, defined on the domain D C IR"™. Moreover,
let us assume that there exist m sets, Ai,..., A, C D, such that ¢(4;) = D,
1 <4 < m. We can observe that the number of connected regions by(Ss) of the
set Sy = {z| f(z) > 0} is at least m times by(Sy), where S, = {z| g(x) > 0}. In
fact, f behaves on each A; as g behaves on the whole domain D. Moreover, this
argument can be extended to the case when g is composed with ¢ several times,
ie, f=goty, wherety, =toto...ot for k occurrences of t. In this case, the
ratio bo(Sy)/bo(S,) is at least mF¥.

Therefore, we can intuitively conclude that deep networks are able to real-
ize, with few resources, functions that replicate a certain behaviour in different
regions of the input space. Obviously, here the concept of “replicating a be-
haviour” must be interpreted in a very broad sense, since the hidden layers of a
deep network can approximate any function.

4 Conclusions

In this paper, we have proposed a new measure, based on Betti numbers, to eval-
uate the complexity of functions implemented by neural networks. The measure
has been used for comparing deep and shallow feedforward neural networks, with
arctangent and polynomial activation functions. It has been shown that, with
the same number of hidden units, deep architectures can realize maps with a

375

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

higher complexity with respect to shallow ones. An informal discussion on the
practical differences between deep and shallow networks is also included.

Interestingly, the proposed measure provides a tool that allows us to study
connectionist models from a new perspective. It is a future matter of research the
application of that measure to more complex architectures, such as convolutional
neural networks, recurrent neural networks, and neural networks for graphs.
Moreover, it is interesting to design algorithms that can estimate the actual
complexity of the function implemented by a given network, f.i., by computing
the Betti numbers of a dataset classified by the network (see e.g., [17]).

References

[1] Y. Bengio, Y. LeCun, R. Salakhutdinov, and H. Larochelle, editors. Proceedings of the
Deep Learning Workshop: Foundations and Future Directions (NIPS 2007). 2007.

[2] H.Lee, M. Ranzato, Y. Bengio, G.E. Hinton, Y. LeCun, and A.Y. Ng, editors. Proceedings
of the Deep Learning and Unsupervised Feature Learning Workshop (NIPS 2010). 2010.

[3] K. Yu, R. Salakhutdinov, Y. LeCun, G.E. Hinton, and Y. Bengio, editors. Proceedings of
the Workshop on Learning Feature Hierarchies (ICML 2009). 2009.

[4] Y. Bengio. Learning deep architectures for Al. Foundations and Trends in Machine
Learning, 2(1):1-127, 2009.

[5] Y. Bengio and O. Delalleau. Shallow vs. deep sum—products networks. In Advances in
Neural Information Processing Systems, volume 24, pages 666-674, 2011.

[6] O. Delalleau and Y. Bengio. On the expressive power of deep architectures. In Proceedings
of the 22"% International Conference on Algorithmic Learning Theory, pages 18-36, 2011.

[7] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A compar-
ison between shallow and deep architectures. IFEE Transactions on Neural Networks,
2014. To be published.

[8] G.E. Bredon. Topology and Geometry, Graduate Texts in Mathematics. Springer, 1993.

[9] F. Scarselli and A.C. Tsoi. Universal approximation using feedforward neural networks:
A survey of some existing methods, and some new results. Neural Networks, 11:15-37,
1998.

[10] B. Hammer. On the approximation capability of recurrent neural networks. Neurocom-
puting, 31(1-4):107-123, 2000.
[11] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli. Recursive neural networks for

processing graphs with labelled edges: Theory and applications. Neural Networks,
18(8):1040-1050, 2005.

[12] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. Computational
capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81—
102, 2009.

[13] V. Kurkova, P. Savicky, and K. Hlavackova. Representations and rates of approximation
of real-valued boolean functions by neural networks. Neural Networks, 11(4):651-659,
1998.

[14] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18" Annual ACM Symposium on Theory of Computing, pages 6-20. ACM, 1986.

[15] J. Hastad and M. Goldmann. On the power of small-depth threshold circuits. Computa-
tional Complezity, 1(2):113-129, 1991.

[16] P.L. Bartlett and W. Maass. Vapnik—Chervonenkis dimension of neural nets. In M.A.
Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 1188-1192.
Cambridge, MA: MIT Press, 2003. Second Edition.

[17] M. Maillot, M. Aupetit, and G. Govaert. A generative model that learns Betti num-
bers from a data set. In ESANN2012, 15th European Symposium on Artificial Neural
Networks, pages 537-542, Bruges, Belgium, 2012.

376

