ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Implicitly and Explicitly Constrained
Optimization Problems for Training of
Recurrent Neural Networks

Carl-Johan Thore

Linkdping University - Division of Mechanics
581 83 Linkoping - Sweden

Abstract. Training of recurrent neural networks is typically formulated
as unconstrained optimization problems. There is, however, an implicit
constraint stating that the equations of state must be satisfied at every
iteration in the optimization process. Such constraints can make a prob-
lem highly non-linear and thus difficult to solve. A potential remedy is to
reformulate the problem into one in which the parameters and state are
treated as independent variables and all constraints appear explicitly. In
this paper we compare an implicitly and an explicitly constrained formu-
lation of the same problem. Reported numerical results suggest that the
latter is in some respects superior.

1 Introduction

Recurrent neural networks (RNNs) in various forms have been subject to much
research for at least 30 years. RNNs have been applied to many different tasks,
including control of robots, solving combinatorial optimization problems, and
time-series prediction [1]. The author’s interest in RNNs stems from work on
design optimization of a type of mechatronic systems where motion is controlled
by RNNs in limit-cycle oscillation [2]. For this reason, the paper focuses on
learning of state space trajectories following Pearlmutter [3] and others, but we
believe that it bears relevance for other applications as well.

The problem of training RNNs to generate desired state space trajectories
dates back to the 1980s [3]. In 1999, Galicki et al. [4] extended the problem to
include time-varying weights and solved it using a sequential linear programming
algorithm, but the basic idea has mostly remained unchanged [5]. Training
is formulated as an unconstrained optimization problem with the objective to
minimize some error functional, and the problem is typically treated by variants
of the gradient descent algorithm. However, as the state of the RNN is taken to
be a function of the parameters to be optimized, there is an implicit constraint
that the equations of state must be satisfied for each set of parameters. This
makes the problem highly non-linear and hard to solve. In particular, difficulties
with learning long-term time dependencies, which are explained by so-called
vanishing or exploding gradients, have been known for quite some time but has
not yet been completely resolved [6]. Perhaps the most promising approach is
due to Martens and Sutskever [7].

In this paper we reformulate a classic problem by treating the parameters
and the state as independent optimization variables while making all constraints

461

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

explicit. This approach is common in optimal control [8] but appears not to have
been tried for training of RNNs. We shall refer to the reformulated problem as
the simultaneous problem, and the traditional problem as the nested problem.

2 The state problem

We consider an RNN of additive type, governed by a non-linear, ordinary differ-
ential equation (ODE). The state problem comprises the following initial value
problem:

v =W(w)s(v) —-Cv+u t € (0,7 (1a)
v(0) = v°. (1b)

Here, a superposed dot denotes time-derivative. W € R™*"™ ig called the weight
matrix, and its entries are collected in a vector w € RP, p = m2. The matrix
C is positive definite and diagonal, and w = w(t) is an external input signal.
The hyperbolic tangent is used as activation function for each neuron, so s(v) =
[tanh(v;)].

It can be shown that every solution to (1) is bounded, so there exists a unique
solution v = v (¢, w, v°) for every T [2]. If the input signal w is of class C¢, ¢ > 0,
it follows that the solution is of class C9 [2].

3 The optimization problem

The objective of our problem is to find network weights, i.e., w, that minimize
the difference between the actual and desired state-space trajectories for a subset
of the neurons in the network over some time interval [Ty, T] for a given input
w. This difference is quantified by a functional

T
/ o — w2 dt,
To

where || - || is the fo-norm, © is a subvector of v, and v, = v.(t) defines the
target trajectory.

A common ingredient in neural network training is some form of regulariza-
tion term. The ¢;-norm of w, which tends to yield sparse weight matrices [2]
is an attractive choice. A simple way of achieving sparsity while avoiding non-
differentiability is to first replace the original variable w by two sets of variables
w™ and w~ having non-negative entries, such that w = w* — w~. A penalty
term

P
plw,w™) = Z (wj' + U)Z_)
i=1
with the same effect as an £;-norm penalty can then be added to the objective
of our problem. An obvious drawback of this approach is that the number
of parameters is doubled, but on the other hand we get smooth optimization
problems.
For use below we introduce the set RY = {& e R" |z; >0, i =1,...,n}.

462

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

3.1 Simultaneous formulation

The simultaneous formulation is the following, infinite-dimensional, optimization
problem:

T
minimize / [0 — v.|[* dt + vo(w ™, w™)
veCd, (whw-)erRY JTy

v =W(w)s(v) —Cv+u, te(0,T]

subject to
J {'v 0) = v°,

where 7 is a positive constant, and w = wT — w™

3.2 Nested formulation

Treating the state variables as (implicit) functions of the parameters, i.e., v =
v(w), yields the nested version of our optimization problem:

T
minimize / 16(w) — v.]2 dt + vd(w*,w"), 3)

(w+1w7)€Rip To

where ©(w) is obtained by solving the state problem (1) for each w. Problem
(3) represents the ”standard” formulation in the literature on RNNs.

4 Finite-dimensional approximations

Approximate solutions to (2) and (3) are obtained by solving discrete versions
of these problems.

Let the interval [0, 7] be divided into n segments, each of length At. The
number of grid points is M = n + 1. If f(-,-) denotes the right-hand side of
(1a), the Euler forward method now yields an iterative scheme

Vit1 :Ui+Atfi(Ui,w), 1=1,...,n,
0 (4)

Vo=

for computing O(At)-approximations v; of v(¢;) — the solution to (1) evaluated
at t; — for all 4. The integral in the objective of, say (2), is approximated as

T n
/T 16— o2 dt ~ 3 A5, — v ()]
0

i=k

where the index k = arg min; ||t; — Tp|]-

463

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Introducing © = (v, ...,var)’ € R™M the finite-dimensional approxima-
tion to (2) can be written as

n
minimize Z At|5; — v (6)|]? + yd(w T, w™)
we]RmM7 (wﬂw’)E]Rip —r
()
) Vi1 = v; + Atf;(v;,w), i=1,...,n,
subject to

Vo = ’UO.
The discrete version of (3) is
n
minimize Z At]|B(w); — v (t)]]* + yo(w T, w™), (6)
(w+,w*)€]Rip —F
where ¥(w);, i = k,...,n, are obtained from (4).

5 Complexity

The overall complexity of the optimization process depends on the number of
iterations times the cost of each iteration times the number of optimization runs
(from different initial points) needed to find an acceptable solution.

With the adjoint method (backpropagation through time) for gradient cal-
culations used here, the cost per iteration for the nested formulation is at least
O(pM) [9]. The Hessian (of the Lagrangian) for the nested problem is dense,
but its formation and solution of linear systems is avoided in variants of gradient
descent.

The simultaneous formulation is treated by an interior-point (IP) solver based
on Newton’s method. Search directions are computed by solving a linear (KKT-)
system [10, Eq. 13], an operation which here has worst-case cost kO([mM + p]?),
where x depends primarily on the sparsity of the constraint Jacobian and the
Hessian. The competitiveness of (5) thus hinges on the sparsity of the deriva-
tive matrices. Fortunately, these are typically very sparse for local collocation
methods such as the Euler forward scheme used here [8].

6 Numerical results

A fully connected network of five (m = 5) neurons is used. Given a constant
input signal, the time histories of the states of the output neurons plotted against
each other should form a circle; cf. [3]. We let the target function be v* =
(sin(57t/8), cos(57t/8)) and choose time intervals [Ty, T] such that the error
functionals are evaluated over two laps of the circle [3]; just one lap is often not
enough to ensure that the shape of the limit-cycle persists for ¢ > T'. To ensure
a persistent shape, Ty should also be set to some relatively large value; see Table
1 below. We take C' to be an identity matrix, w = (1,0,0,0,0) and let © contain
the fourth and fifth component of v. v is set to 10~7, mainly because a small
positive value tended to improve numerical performance slightly.

464

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

As an optimization solver we used Ipopt v. 3.11.2 [10] with the direct linear
solver MAB7 [11]; the update strategy for the barrier parameter set to ”adap-
tive”; the maximum number of iterations set to 3000; and default settings for
the other options. Exact first and second order derivatives were computed with
automatic differentiation using ADOL-C [12]. For the Hessian, however, we used
mainly Ipopt’s limited-memory quasi-Newton approximation (Ibfgs), with ”lim-
ited_memory_max_history” set to 60. The overall framework was implemented
in Matlab R2012a running on an Intel Core I5-520m.

Table 1 shows a comparison between the simultaneuous (Sim) formulation
(5) and the nested (Nes) formulation (6). The numbers are based on optimiza-

Problem # iterations f* At | T | Var. | CPU [s]
min, med, max min, med, max med
Nes (1) 476, 3000, 3000 4e-6, 0.5, 3e3 0.1 | S| 50 264
Nes (e) 3000, 3000, 3000 le-5, 3, 3 0.1 | S| 50 222
Sim (1) 136, 319, 1960 3e-6, 1le-5,8e-4 | 0.1 | S| 465 47
Sim (e) 73, 158, 455 4e-6, 6e-6, 3e-5 | 0.1 | S | 465 21
Nes (1) 132, 3000, 3000 9e-6, 3, 5e6 0.1 | L | 50 345
Sim (1) 112, 326, 3000 2-6, le-5, 4 0.1 | L | 465 44
Nes (1) 37, 3000, 3000 | 4.2e-6,2.94,7e4 | 0.01 | L | 50 283
Sim (1) 152, 369, 3000 3.7e-6, 1e-5,2 | 0.01 | L | 8250 350

Table 1: An”1” (Ibfgs) or an ”e” (exact) in parenthesis in the first column
marks the type of Hessian used. f* denotes the objective function value
at the final point returned by the optimization solver. med = median.
Var. = Number of variables. I = Integration interval [Ty, T]; S = [5.0 8.2],
L = [13.2 16.4]. CPU = CPU time.

tions using 30 different initial guesses for (w™, w™) generated from a uniform
distribution over (0,1). The state variables in the simultaneous problems were
initialized to zero, except those of the output neurons that were initialized to
their target values. Loose artificial upper and lower bounds were imposed on the
state variables, and upper bounds was added on the parameters (none of these
constraints were active at the solutions).

As can be seen in Table 1, rows 1, 2, 5 and 7, the nested formulation is very
difficult to solve. For a majority of the initial guesses, Ipopt failed to find an
acceptable solution within the maximum number of iterations (note that the
few acceptable solutions were always obtained after 3000 iterations). Using an
exact Hessian or decreasing the time step (see rows 2 and 7 in the table) had no
impact on the results. For the simultaneous formulation, however, the situation
is entirely opposite: good solutions was found for almost every initial guess, and
with shorter CPU time compared to the nested problem.

The problems were also solved using the IP- and SQP-solvers in fmincon from
the Matlab Optimization Toolbox, but they performed worse than Ipopt. This
suggests that the difficulties with the nested formulation stem from the problem
formulation itself rather than some particular property of Ipopt’s algorithm.

465

ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

7 Concluding remarks

Two different formulations of an optimization problem for training of RNNs have
been compared. The numerical results confirmed that the nested formulation,
which is standard in the literature, is difficult to handle even for state-of-the-art
optimization solvers. In contrast, the simultaneous formulation could, despite
its greater size, be solved with relative ease — convergence within high accuracy
to local optima with small objective function values was almost always obtained.
The results suggest that it is possible to avoid difficulties in RNN-training by
using an explicitly constrained formulation of the problem.

It should be noted that a time step At = 0.1 or 0.01 is often to long for
the discrete solution to be a good approximation of the solution to the under-
lying continuous-time problem. If the plan is to implement the discrete-time
system directly this does not matter, but otherwise one should always check the
validity of the solution using an ODE-solver with local error control and strict
tolerances. In practise, solutions to the continuous-time problem would likely be
sought using higher order discretization schemes together with mesh refinement
algorithms to reduce the number of iterations run on the finest grids [8].

References

[1] B Hammer, B Schrauwen, and JJ Steil. Recent advances in efficient learning of recurrent
networks. In Proceedings of the European Symposium on Artificial Neural Networks,
pages 213-226, 2009.

[2] C-J Thore. Optimal design of neuro-mechanical oscillators. Computers & Structures,
119:189-202, 2013.

[3] BA Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural
Computation, 1:263-269, 1989.

[4] M Galicki, L Leistritz, and H Witte. Learning continuous trajectories in recurrent neural
networks with time-dependent weights. IEEE Transactions on Neural Networks, 10:741—
756, 1999.

[5] AF Atiya and AG Parlos. New results on recurrent network training: Unifying the algo-
rithms and accelerating convergence. IEEE Transactions on Neural Networks, 11:697—
709, 2000.

[6] R Pascanu, T Mikolov, and Y Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th Int. Conference on Machine Learning, 2013.

[7] J Martens and I Sutskever. Learning recurrent neural networks with Hessian-free op-
timization. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 1033-1040, 2011.

[8] JT Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Pro-
gramming. STAM, 2009.

[9] P Baldi. Gradient descent learning algorithm overview: A general dynamical systems
perspective. IEEE Transactions on Neural Networks, 6, 1995.

[10] A Wiéchter and LT Biegler. On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical programming,
106:25-27, 2006.

[11] IDuff. MA57—A code for the solution of sparse symmetric definite and indefinite systems.
ACM Transactions on Mathematical Software, 30:118-144, 2004.

[12] A Walter and A Griewank. Getting started with ADOL-C. In U Naumann and O Schenk,
editors, Combinatorial Scientific Computing, pages 181-202. 2012.

466

