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Abstract. STDP is believed to play an important role in learning and memory. 

Additionally, experimental evidence shows that a few strong neural inputs can 

drive a neuron response and subsequently affect the learning of other inputs. 

Furthermore, recent studies have shown that local dendritic depolarization can 

impact STDP induction. This paper integrates these three biological concepts to 

devise a new biologically plausible supervised learning method for spiking 

neurons. Experimental results show that the proposed method can effectively map 

a random spatiotemporal input pattern to a random target output spike train with a 

much faster learning speed than ReSuMe.  

1 Introduction 

Spiking neural networks (SNNs) are able to capture the rich dynamics of biological 

neurons, hence complex information processing in the brain can potentially be 

modelled by SNNs [1]. Significant efforts have been made to design learning 

algorithms for SNNs. Existing learning methods such as SpikeProp [2] and the multi-

spike learning algorithm [3] are based on the estimation of the gradient of an error 

function and can suffer from the problems of local minima and silent neurons. 

ReSuMe is another existing supervised learning algorithm which uses a combination 

of Spike-timing-dependent plasticity (STDP) and anti-STDP learning windows to 

adjust synaptic weights [4].  In addition, biologists have studied various forms of local 

spike-based learning and synaptic plasticity in biological neurons [5]. The intrinsic 

complexity and discontinuity of spiking neurons require the development of more 

effective and efficient learning approaches inspired from neuroscience and biological 

concepts in order to improve the processing ability of SNNs and increase their 

applicability in solving real-world problems.   

 In this paper, we propose a new biologically plausible supervised learning 

approach for spiking neurons, called BPSL (Biologically Plausible Supervised 

Learning), which uses the following three biological concepts: STDP, teacher inputs 

and dependency of STDP on local dendritic depolarization. The following section 

briefly introduces the biological concepts used in this work and describes the 

proposed BPSL method. Section 3 presents the simulation results. Finally, section 4 

concludes the paper.  
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2  Materials and Methods 

This section discusses the biological background and principle of the proposed 

learning method.  

 Supervised learning with teacher inputs: Supervised learning at the neuron 

level has been shown experimentally by Fregnac and Shulz [6]. A few strong neural 

inputs can affect the neuron response and therefore drive the learning of other inputs. 

Therefore, these strong inputs can act as a teacher for the postsynaptic neuron to 

perform a specific task [6]. We have used this biological concept to divide a neuron’s 

synaptic inputs during learning into sensory synaptic inputs (SI1, SI2, … SIn) and 

teacher synaptic inputs (TI1, TI2, … TIm).  

 STDP: It is believed to play an important role in learning and memory 

formation [7]. Phenomenological models of synaptic plasticity based on spike timing 

were discussed in [8] where synaptic plasticity can depend on spike timings, synaptic 

weight and membrane potential. The modification of a weight during STDP takes 

place at the pre and post synaptic spike times. Two local variables    and    are used 

to implement STDP where     and    are low-pass filtered version of the pre- and 

postsynaptic spike trains (which are denoted by SIj and Oi, respectively, in Figure 1).  

 

Fig. 1: The principle of a pair-based STDP. The figure is adopted from [8].  

At the instance of a presynaptic (postsynaptic) spike the synapses are depressed 

(potentiated) in proportion to the momentary trace of the postsynaptic (presynaptic) 

spike,    (  ), which is represented in Figure 1 by unfilled (filled) circles. So, the 

STDP can be summarized by the following equation.  

       {

            

           
 

                     

 (1) 

Where    is the firing time of the    spike in Oi.   
  is the firing time of the    spike in 

SIj.       is the neuron     synaptic weight at time t (Figure 1). 

Impact of local dendritic depolarisation on STDP: The impact of the sub 

threshold Post Synaptic Potential (PSP) on synaptic plasticity was discussed in [5]. 

Several recent studies have investigated how dendritic synapse location affects STDP 

[9]. Local dendritic depolarization can be used to manage synaptic plasticity [5]. In 
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this research it is assumed that the teacher and sensory inputs are from different 

branches of the dendritic tree and therefore have different plasticities. The strength of 

teacher synapses are constant and the STDP applied to sensory synapses is affected by 

the local PSP produced by the sensory inputs.  

The proposed BPSL method: BPSL is applied to a single neuron to enable it to 

map a spatiotemporal input pattern to a desired target output spike train. The neuron is 

connected to a number of sensory inputs (SI) and a number of teacher inputs (TI); the 

latter are applied during the training phase only. The structure of the neuron during 

training is illustrated in Figure 2 (A). A copy of the desired spike train is presented to 

the neuron at each teacher input. However, it is also possible to use a single teacher 

input with a much stronger weight instead of multiple teacher inputs with smaller 

weights as used in this work. Poissonian spike trains are used at sensory and teacher 

inputs. Examples of a teacher spike train and a sensory spatiotemporal input pattern 

are shown in Figure 2 (B) and Figure 2 (C), respectively.  

 

           

Fig. 2: (A) Neuron structure during training with multiple teacher inputs (TI) and 

sensory inputs (SI). (B) The desired spike train presented at each TI. (C) A sensory 

spatiotemporal input pattern applied through SIs (400 sensory inputs are shown 

here). 

 

Fig. 3: (A) Neuron PSP in response to the sensory inputs before learning. (B) The 

desired spike train. (C)  Actual spike train and PSP during learning.  

 In the first stage of the learning, the synaptic weights of the sensory inputs are 

chosen low enough to prevent the neuron from firing without teacher inputs. Figure 3 

(A) illustrates the PSP of the neuron before training in response to the sensory input 

spatiotemporal pattern and in the absence of the teacher inputs. Therefore, in the first 

stage of the learning the sensory inputs have no role in exciting the neuron.  

  The output spike train and PSP of the neuron in the first stage of learning (when 

both sensory and teacher inputs are applied) are shown in Figure 3 (B) and Figure 3 

(C), respectively. At this stage the actual output is the same as the desired spike train 
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presented at the teacher inputs. The high synaptic weights of the teacher inputs cause 

a jump in the PSP at the instance of a desired spike time and force the neuron to fire. 

In Figure 3 (C) the amplitude of the jump in the PSP is denoted by ‘A’.  

 During learning, appropriate sensory weights should be adjusted to increase the 

contribution to the PSP,      , from the sensory inputs so that the desired output spike 

train is sustained when the teacher input is removed. The learning is terminated when 

the neuron produces the desired output spike train in the absence of the teacher inputs. 

The teacher inputs cause the neuron to fire at the desired times and are used in the 

proposed BPSL to find appropriate weights. BPSL also uses STDP for adjusting the 

weights of sensory input connections that have a spike shortly before the desired 

times. Additionally, the amount of weight update depends on the PSP produced by the 

sensory inputs.  If the PSP at a desired spike time is low and is far from the threshold 

level, the algorithm applies higher updates to the appropriate weights to bring the 

current PSP,      , closer to the firing threshold. In contrast, BPSL applies small 

weights updates when the PSP at a desired spike time is slightly lower than the firing 

threshold. The weight change is summarised by the following equation: 

       {

                         

                  
                    

 (2) 

Where   {          } represents the set of desired output spike times,   is a 

learning constant that reduces the weights when an undesired output spike occurs (i.e. 

an output spike occurs at time    and     ),       represents the value of the trace 

caused by the input spike train j at time  . The term 

A              is the difference between the firing threshold,    , and the sensory 

PSP at time  ,      . Only sensory input connection weights are updated using 

equation (2), the connection weights of teacher inputs remain constant.  

 The contribution of the local dendritic depolarization, i.e. the PSP produced at 

the sensory dendrite branch, to the sensory weights adjustment increases the speed of 

the learning by introducing larger weight updates when the level of the PSP is much 

lower than the neuron firing threshold at the time of a desired output spike. That is, if 

the PSP,      , is much lower than the neuron firing threshold    , the weight update 

should be larger than when the PSP is near the threshold level. This larger modulation 

of the synaptic weights is achieved by the BPSL rule (2) through the use of the term 

    . Aditionally, the weight changes for each synapse j,       , are accumulated 

during each epoch k. At the end of an epoch  , if the number of spikes in the actual 

output spike train,   , is equal to the number of spikes in the desired spike train,   , 

then the accumulated weight change, ∑      
  

  
   , is added to the current weight of 

synapse j. Otherwise, if      , the current weight of synapse j is decreased using the 

non Hebbian term ,         , as described in equation (3). 
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    {

  
  ∑      

  
  
         

  
                

  (3) 

Where   
  represents the efficiency of synapse j at epoch   and   is a constant 

learning rate. When      , the reduction in the weights decreases the activation of 

the neuron and may potentially reduce the number of actual output spikes,   .  

3 Simulation results 

The LIF neuron parameters are set to the same values used in [4] (membrane time 

constant      ms, refractory period       ms, membrane rest potential    

   mv, firing threshold      55mv, membrane resistance        ). The 

parameter   is set to        and the parameter α is set to       . 
 A correlation based metric, C, which is used in [10]  is employed to evaluate the 

performance of the proposed BPSL approach. C measures the similarity between two 

spike trains (the actual and desired output spike trains in this work) such that C is 

equal to 0 for two uncorrelated spike trains and it is equal to 1 for two identical spike 

trains. In the following experiments, each simulation is repeated for 50 trials. The 

obtained C for each trial is smoothed to get a monotonically increasing curve. Each 

value of C is replaced by its previous value if there is a drop in the value compared to 

its previous one to smooth the C curve. Then the mean of  the 50 smoothed values of 

C, denoted by Cm, is obtained and plotted for both methods as shown in Figure 4. 

 

 

Fig. 4:    for BPSL, ReSuMe and STDP when (A)   =200ms and (B) Tt=300ms. 

In the first experiment the performance of the BPSL, STDP and ReSuMe are 

compared when the input and output spike trains total duration is   =200ms. The    

value for BPSL at the earlier epochs is higher than the others (Figure 4(A)). For 

instance, at epoch 6,    values for BPSL, ReSuMe and STDP are equal to 0.95, 0.80 

and 0.68, respectively. The performances of the three algorithms are then compared 

for a longer duration, Tt=300ms, of the input and output spike trains (Figure 4(B)). 

The BPSL algorithm has again achieved higher correlations     between the actual 

and desired output spike trains than ReSuMe and STDP at an earlier stage of the 

training. For example BPSL reached         at the 6
th
 epoch whereas ReSuMe 

and STDP achieved lower    values of 0.80 and 0.67, respectively. It is not until the 

24
th

 epoch when ReSuMe reaches   =0.91. As for STDP, its Cm remained below 0.8 
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during the whole training process. Matlab simulations were carried out on a quad core 

PC with 3GHz and 16GB of RAM and the simulation of each epoch of the BPSL and 

ReSuMe learning algorithms takes 170ms and 146ms, respectively. Therefore, while 

the proposed BPSL approach requires 170×6=1020ms to reach Cm=0.91, ReSuMe 

(despite having a lower computational cost per epoch) takes a total of  

146×24=3504ms to reach the same value of   .  

4 Conclusion 

This paper presented a new biologically plausible supervised learning (BPSL) method 

for spiking neurons. The proposed learning method is applied to a single neuron and 

integrates three biologically plausible concepts, namely teacher synaptic inputs, STDP 

and the dependency of the STDP on local dendritic depolarization. The teacher inputs 

drive the neuron to fire at the desired times at the beginning of the learning. The level 

of the local dendritic potential associated with the sensory input is used to determine 

the amount of weight update. Simulation results showed that the proposed BPSL 

approach can effectively map a spatiotemporal input pattern to a desired target output 

spike train at a faster learning speed than the established ReSuMe learning method. 
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