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Abstract.  A weightless neural state machine acting as an exploratory automaton changes 
its position in a simulated toy world by its own actions. A popular question is asked: how 
might the automaton ‘become conscious of’ the effect of its own actions? Here we develop 
previously defined iconic learning in such weightless machines so that this knowledge can 

be achieved. Weightlessness, iconic learning are expressed in terms of state equations. 
Experimental results that show the conditions under which correct predictions can be 
obtained on a neural simulator are presented. Issues of information integration and memory 
implication are briefly considered at the end of the paper.  

1 Introduction: Iconic Training then and Now 

In an earlier paper (Aleksander and Morton, [1])i t was shown that the ‘iconic’ method of 

training weightless neural state machines could transfer perceptual/visual information into the 

states of the machine. We argued that this results in a system that has a phenomenally 

conscious state structure where events in the perceptual world form attractors of meaningful 

(potentially leading to action)states. In this paper we investigate how such a system can learn 
to predict  the outcome of its own actions to anticipate the world input.   

2 The Scenario 

2.1 Finite state machines 

                        

 

                                       

Figure 1:  Relationship between a world W and an acting entity E (note that, the dashed line 

is relevant to section 4.2) 

We define a world W  as a discrete finite-state machine with the following state dynamic:      

        
             (1)                                                 
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where   
  is the set of states at time t+1  (i.e. the ‘next’ state) and    is the set of states at 

time t (i.e. the current state). Also G is a finite set of actions applied to this world.   is a 

Cartesian product. We then define an entity E which is the agent capable of acting on W. E is 

a learning finite-state machine (learning refers to the updating of fe from examples), with the 

state dynamic : 

                                                                     
                                   (2) 

Note that this assumes that W  is completely observable by E (i.e. there are no hidden internal 

variables). 

The action output is                                                 (3) 

In the material presented below we use the notation 

            

2.2 A Neural State Machine 

A finite state machine such as  E  becomes a neural state machine when every state variable 

in Se  is the output of a weightless neuron. This is also true of each variable of G. Such 

machines are generally iconically  trained. For completeness we summarise below the 

weightless and  iconic concepts, used in this paper, while details may be found elsewhere 

(e.g. Aleksander and Morton [2]) 

2.3 Weightless Neurons 

The weightless neurons used in this paper have n binary inputs and one binary output.  

Training is a process where the input vector and the output bit (b) are stored as an  (n+1)- bit 
vector in a binary  memory of the neuron. A training set X consists of /X/  such distinct 

vectors, say {x1, x2 ….x/X/}  When learning is over and the neuron has to classify an unknown 

input vector    (i.e. the jth training vector), this is compared in the neuron to all stored vectors 

in X. If    is closer in Hamming distance to one of these rather than others, the stored b forms 

the neuron output. This gives the neuron a ‘nearest-neighbour’ form of generalisation. on 

what has been learned.  If there is a contention in the sense that in the set of nearest 

Hamming-distance vectors not all b values are the same, the output of the neuron is assigned 

a 0 or a 1 arbitrarily, with equal probability.  This also occurs if the nearest stored vector has 

a Hamming distance greater than some threshold selected by the experimenter.   

2.4 Iconic Training 

This applies to neurons acting as state variables in a neural state machine in which it is 

assumed that the dimensions of the state are the same as the dimensions of the input. Then 
each state variable is associated with a single variable of the input. This variable controls the 

b  value of one neuron and associates this with the input vector of that neuron. This scheme 

can be used to create attractors in the state space of the neural automaton such that the 
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attractors represent and, therefore, reconstruct for partial inputs, the input images on which 

the system is trained. Attractors are created by training an iconically created  state to return to 

itself for a   set of inputs (often noise) present at the input during training. That is, 

                               (4) 

This becomes one of the entries for fe considered as a table that defines (2) 

3 Prediction  

At a minimal level, prediction is defined as E at time t  being in a state which predicts the 

state of W at (t+1), that is: 

                  t               (5) 

A problem arises if by iconic training      t =       because (from (5)) prediction could 

happen only were the state of E re-entrant, that is when its action on the world would produce 

nil change.  But, were E  ‘aware’ of its own action associated with      t  , that is, it could 

form        t which, because of iconic training would become        t  which, from (1) and 

further iconic training the network can learn.  At this point, iconic training becomes a time-

dependent process, and we feel it is best to proceed by illustrating the idea with a simulation.  

4 Simulation of a predictive system 

                                      

 

Figure 2: Screen shot of am NRM: Neural A is a model of the world, Neural C is the 

exploring entity and neural B is the Action output from the entity to the world. 

The Neural Representation Modeller (See, I.Aleksander et.al. [3]) was used to simulate a 

world and an exporing entity. A screen shot of the arrangement is shown in figure 2.  Two 

state machines are involved Neural A which is the world and neural B/C which are the entity. 
In such machines ‘previo’ (standing for ‘previous’) represents (sx)t-1  and ‘state’ represents 

(sx)t . In the entity, C is a 3-bit machine that can be in 8 states. It acts on the world by means 

of 5 actions, G (as in equation (3)) = {(u)p, (d)own, (l)eft, (r)ight, (s)tand-still }. Initially this 

machine acts arbitrarily and autonomously (that is, fg is degenerate). That is, The action 

outputs occur (for system convenience and without implications on the results) with a 

probability of 1/8 for the first four and ½ for the fifth.   The world (Neural A, where A) is a 

9x9 array of weightless neurons, The position of the entity (state of the world) is indicated by 

a 3x3 black square for which there are 9 non-overlapping positions. The world responds in 

one time step to the action messages listed above. The random action causes the entity (black 
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square) to perform a random walk in the 9x9 space, which is made toroidal. For example, a u 

control input in the state shown in fig 2 would cause the next world state to have the entity 

(black square) in the bottom, right-hand corner of the space.   

The world (Neural C) is also a 9x9 network of weightless neurons. This is a fully connected 

recursive network with an as yet unspecified connection to the world either as input or 

output.  

4.1 Iconic learning to predict 

The obvious way to predict the next state of the world is for the entity to ‘become aware’ of 

its own action as well as the effect that this has on the world.  In terms of figure 1 this means 

that whatever     is being generated by the entity (continuing with arbitrary action 
selection for the moment) the next state of the entity will be a function of the intended action 

and the current state of the world.  That is, equation (4) becomes modified to  

                                                                                                (6) 

As exploration develops, internal states that are not iconic get trained out and (6) becomes  

                                                                              

Which means that the results of the entity’s exploration have been internalised indicating that 

the entity knows what will happen from proprioception of its own actions.  In summary, 

looking at figure 2, training proceeds as follows to obtain the results below  i) generate an 

arbitrary action, ii) let the entity attempt a prediction and record this, iii) let the world take its 

next step, iv) correct the prediction and return to (i).   

4.2 Results 

In summary, looking at figure 2, training proceeds as follows to obtain the results below:  i) 

generate an arbitrary action, ii) let the entity attempt a prediction and record this, iii) let the 
world take its next step, iv) correct the prediction by iconic training and return to (i).  The 

recording of the prediction and the actual state of the world are shown in figure 4.  

                               

Figure 4: The upper row shows the first 10 steps in which the entity attempts to predict the 

next world state before learning what it actually which  is shown in the lower row. The 

prediction score is 3/10 

The first competence learned by the system is the language in which the world states are 

represented, that is a black 3x3 square in 9 legitimate positions. The second is the prediction 
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of the world state itself.  In the 10 learning steps above, the ‘language’ performance is correct 

in 7 out of 10 cases, and remains 10/10 in further trials. The prediction performance is only 

3/10 correct in the first run and typically develops as follows:  

Run:                   1    2    3   4    5    6   7    8    9   10   …. 

Pred./10:          3    5    7   4    9    8  10 10  10 10   …. 

We say that ‘maturity’ has been achieved after 7 runs, that is, after 70 training steps, the 

entity can predict the effect of its own actions  

4.3 Connectedness and ‘becoming conscious’ 

All the above is achieved with a fully connected recursive net. Much current discussion 
focuses on Information Integration issues in which the ability of less-connected systems to 

‘become conscious’ of anything is shown to depend connectedness [4]. To examine this we 

have repeated the above experiments with lower percentages of internal interconnection and 

observed that correct operation still takes place but with much longer times to maturation and 

with noise entering into the predictive state lowering the predictive confidence. Fig. 5 shows 

the nature of the prediction. Confidence is 1-(average % noise for the whole run) 

Connectedness has cost implications in terms of the memory required by the neural state 

machines. Below we show how performance in terms of training steps to prediction and 

ultimate prediction confidence and amount of weightless system memory relate. The memory 
requirement for an n input neuron system is:    
                                                . 

                           

Figure 5: Result after 37 training runs (370 steps). Connectedness reduced from 81 full 

internal connections per neuron to 10 randomly chosen ones. The confidence level is 0.94 

 Inputs per neuron       81 (100% conn) 40 (50% conn) 20(25% conn) 10(12.5%conn) 

Runs and confidence.        7  ,  100%          17, 100%            25,  99.53%      37,  94.32%      

Memory (bits)                   464,940             564,570               405,000                  329,670 

At 5 inputs per neuron saturation occurs in the  neuron training and the system collapses 

before reaching full prediction.   
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5 Discussion 

This exercise is part of a current series of investigations of the way that an artificial entity (in 

this case a weightless neural sate machine) can become conscious of the effect of  its actions 
in its world. This is a precursor to current work on action selection and emotion-based 

planning . We have focused on explaining the formal nature and training of the neural state 

machine without intending to contribute to the existing corpus of work on series prediction or 

robot exploration.  The key issue has been the introduction of proprioception as an influence 

on the generation of the ‘next state’ within the entity. We have shown that the collection of 

next world states can be predicted by merely  allowing the entity to generate random action 

signals and observe the result of its actions entirely autonomously, without the intervention of 

an experimenter.   Starting with a fully connected net acting on a ‘toy’ world, we showed that 

the internal feedback in the entity machine, can be reduced to 12.5% of full connection and 

still maintain performance, albeit by introducing noise into the predictions.  We have not 

attempted a prediction of the measured performance as this is our  first publication on this 

topic.  Such analysis is part of current and future work. 
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