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Abstract. We introduce a new methodology, called SVORIM+, for
utilizing privileged information of the training examples, unavailable in
the test regime, to improve generalization performance in ordinal regres-
sion. The privileged information is incorporated during the training by
modelling the slacks through correcting functions for each of the paral-
lel hyperplanes separating the ordered classes. The experimental results
on several benchmark and time series datasets show that inclusion of the
privileged information during training can boost the generalization perfor-
mance significantly.

1 Introduction

Machine learning algorithms for classification problems map inputs into cate-
gorical target values (class labels) [1]. In many practical applications, a natural
order may exist on the class labels. A variety of algorithms (referred to as
ordinal regression) have been developed that explicitly use the class order infor-
mation, e.g. [2, 3, 4, 5, 6]. A direct generalization of support vector machine
approach for ordinal regression has been proposed by finding r− 1 parallel class
separation hyperplanes such that the input/feature space is partitioned into r
ranked regions corresponding to the classes [4]. This approach has been further
extended in support vector ordinal regression (SVOR) with explicit and implicit
constraints [6].

For some ordinal regression problem, along with the training inputs x, we
may have access to some additional information x∗ about training examples, but
this privileged information x∗ will not be available for inputs x at the test stage.
For instance, in predicting a financial indicator, during training we have access
to both the past and future contexts of time instances within the training set.
Such information, if used appropriately, may significantly enhance generalization
performance of ordinal regression methods. Obviously, the information about

∗The research work of P.A. Gutiérrez is partially funded by FEDER funds, the TIN2011-
22794 project of the MINECO and the P11-TIC-7508 project of the “Junta de Andalućıa”
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the future is privileged and will not be available in the test phase. Motivated
by SVM+ [7], which incorporates privileged information by modelling the slack
variables of training inputs through so-called correcting functions, in this paper,
we propose to exploit privileged information in Support Vector Ordinal Regres-
sion with Implicit constraints (SVORIM) by constructing slack variable models
for each parallel separation hyperplane, which will be referred to as SVORIM+.

2 SVORIM+ Approach

We chose the implicit SVOR formulation (SVORIM) instead of the explicit one
[6], because in the explicit SVOR the j−th hyperplane (j = 1, 2, ...r − 1) is con-
strained only by the slacks of patterns from adjacent classes, whereas in SVORIM
it is constrained by the slacks of patterns from all classes. Since the key aspect
of incorporating privileged information into SVOR is modelling of slacks via
models operating on the privileged space, the SVORIM framework can provide
more flexibility in using the privileged information through greater number of
correcting functions. Also, SVORIM was empirically found to outperform the
explicit constraint approach in terms of Mean Absolute Error (MAE) [6].

Suppose we have observations classified into r ordered categories and there
are nk examples xk

i ∈ X, i = 1, ..., nk, in the kth category, k = 1, 2, ..., r. To
simplify the presentation we assume that each example xk

i has an associated
privileged information1, x∗k

i ∈ X∗. For xk
i ∈ X with x∗k

i ∈ X∗, the slack values
corresponding to each separating hyperplane j are obtained through models
(“correcting functions”) of the form ξj

ki = w∗
j Φ∗(x∗k

i ) + b∗j , operating on the
privileged space X∗. The primal problem of the proposed SVORIM+ can be
formulated as:

min
w,b,w∗,b∗

1
2
‖ w ‖2 +

γ

2

r−1∑

j=1

(‖ w∗
j ‖2) + C

r−1∑

j=1

r∑

k=1

nk∑

i=1

(w∗
j ·Φ∗(x∗k

i ) + b∗j ),

s.t. for every j = 1, ...r − 1, (1)
w · Φ(xk

i ) − bj ≤ −1 + (w∗
j ·Φ∗(x∗k

i ) + b∗j ), for k = 1, ..., j; i = 1, ..., nk,

w · Φ(xk
i ) − bj ≥ +1 − (w∗

j ·Φ∗(x∗k
i ) + b∗j ), for k = j + 1, ..., r; i = 1, ..., nk,

w∗
j ·Φ∗(x∗k

i ) + b∗j ≥ 0.

where Φ and Φ∗ are feature maps induced by kernels operating in X and X∗

spaces, respectively. The term
∑r−1

j=1(‖ w∗
j ‖2) corresponds the capacity of the

correcting functions and is controlled by the parameter γ ≥ 0, tuned via cross-
validation.

Note that unlike in SVORIM [6], here the slack variables are reduced to
one set per threshold and are replaced by correcting functions defined in the
privileged information space.

1Extension to the case where only a subset of training examples has privileged information
is straightforward.
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Following the standard SVM practice, Lagrangian will be constructed:

L =
1
2
‖ w ‖2 +

γ

2
‖ w∗

j ‖2 +C
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j=1

r∑

k=1

nk∑
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i ) + b∗j )

−
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j=1

j∑

k=1
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i=1

αj
ki(−1 + w∗

j ·Φ∗(x∗k
i ) + b∗j − w · Φ(xk

i ) + bj) (2)

−
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j=1

r∑

k=j+1
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i=1

αj
ki(−1 + w∗

j ·Φ∗(x∗k
i ) + b∗j + w · Φ(xk

i ) − bj)

−
r−1∑

j=1

r∑

k=1

nk∑

i=1

βj
ki(w

∗
j ·Φ∗(x∗k

i ) + b∗j ),

where αj
ki, β

j
ki ≥ 0 are the Lagrange multipliers. The primal problem is then

transformed into its (more manageable) dual formulation using the KKT Con-
ditions:

max
α,β

∑

k,i

(
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αj
ki)

−1
2
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s.t.
j∑
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αj
ki =
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k=j+1
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i=1

αj
ki,

r∑
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(αj
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ki − C) = 0, ∀j

αj
ki ≥ 0, βj

ki ≥ 0,∀i,∀j

where K(·, ·) and K∗(·, ·) are kernels in X and X∗ spaces, respectively. Once the
solution of the dual problem is found, the value of the discriminant function at (a
new) input x is F (x) =

∑
k,i(

∑k−1
j=1 αj

ki −
∑r−1

j=k αj
ki)K(xk

i ,x) and the predictive
ordinal decision function is defined as arg mini F (x) < bi.

3 Experiments

We tested our methodology on 7 data sets of different nature and origin. The
input vectors were normalized to zero mean and unit variance. RBF kernels were
used in both X and X∗ spaces with kernel widths σ and σ∗, respectively. In
all experiments the parameter ranges were as follows: log10 C ∈ {−2,−1, . . . , 2},
log10 σ ∈ {−2,−1, . . . , 2}, log10 σ∗ ∈ {−2,−1, . . . , 2} and log10 γ ∈ {−2,−1, . . . , 2}.
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Hyper-parameters were tuned via grid search based on 5-fold cross validation
over the training set. The cvx matlab tool2 was used as optimization routine.

3.1 Benchmark datasets

We employed two benchmark ordinal datasets, Pyrimidines and MachineCPU
used in [6]. Following [6], the continuous targets were discretized to 5 ordi-
nal categories (equal-frequency binning). Each data set was randomly inde-
pendently partitioned into training/test splits 10 times, yielding 10 re-sampled
training/test sets of size 50/24 and 150/59 for Pyrimidines and MachineCPU,
respectively. In order to demonstrate the advantage of the proposed method
for incorporating the privileged information, an initial experiment is conducted
which categorizes the input dimensions into ’original’ and ’privileged’ features
in spaces X and X∗, respectively. For each data set, we sort the input features
in terms of their relevance for the ordinal classifier (in our case SVORIM). The
first most relevant half of the features will form the privileged information, while
the remaining half will constitute the original space X. Privileged features will
only be incorporated in training of SVORIM+ and will be absent during testing.

The average results over 10 randomized data set splits (trials), along with
standard deviations are shown in Table 1. Exploiting the privileged informa-
tion slightly decreases the Mean zero-one error (MZE) (by roughly 1%), de-
creases MAE (roughly by 7%) and decreases Macroaveraged mean absolute
error (MMAE) (with about 13% of improvement for Pyrimidines and 7% for
MachineCPU). We used the non-parametric Wilcoxon signed-rank test [8] to
assess significance of the performance differences. The corresponding p-values
(included in Table 1) reveal that the differences in MAE and MMAE are signif-
icant. We stress that both models are using the same set of features during the
test phase, the privileged information was used only during training.

Table 1: Performance comparison of SVORIM and SVORIM+ on Benchmark
data sets.

Dataset Criteria SVORIM SVORIM+ p−value
MZE 0.5834±0.0651 0.5750±0.0756 0.5000

Pyrimidines MAE 0.7875±0.1249 0.7250±0.1306 0.0156•
MMAE 0.9627±0.1609 0.8373±0.1421 0.0039•
MZE 0.4390±0.0611 0.4356±0.0480 0.7656

MachineCPU MAE 0.5220±0.0984 0.4848±0.0599 0.0547◦
MMAE 0.5197±0.0991 0.4808±0.0601 0.0488•

◦: Statistically significant differences with a level of significance of α = 0.15.
•: Statistically significant differences with a level of significance of α = 0.05.

3.2 Time series datasets

In time series data sets (see Table 2), during the training, information about
the immediate future can be used as privileged information, i. e. if we predict

2http://cvxr.com/cvx
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the value at time t, privileged information is a vector of future values at time
t + 1, · · · , t + d, while original information is a vector of historical observations
at time t − d, · · · , t − 1, where the time window length d for both original and
privileged information is given in Table 2. As in [9], the time series were quan-
tized into 4 ordinal categories. FTSE100 is a series of daily price (index) spreads
within 1 October 2008 - 31 September 2012 (downloaded from Yahoo Finance).
Wine data set contains Australian red wine sales in the period of 1980-1991.
SOI is monthly values of the Southern Oscillation Index (SOI), which indicates
the sea surface temperature of the Pacific, in the period between January 1999
and October 2012. Laser data represents a cross-cut through periodic to chaotic
intensity pulses of a real laser in a chaotic regime. Birth data set contains births
per 10,000 of 23 year old women in U.S. in the period of 1917-1975.

Table 2: Description of the time series datasets, d is the time window length for
both original and privileged information.

Dataset training/test d # trails
FTSE100 1 year/1 month 5 36

wine 118/13 5 10
SOI 300/200 5 7
Laser 500×10/4874 10 -
Birth 39/9 5 10

For FTSE100 and SOI we used the rolling window methodology with window
size of test set size. For smaller data sets, Wine and Birth, we used 10-fold cross-
validation. For the rather long Laser dataset, we trained an ensemble model
consisting of 10 models independently trained on 10 non-overlapping folds of the
training set (500 points in each fold). The results are given in Table 3, including
the results of the Wilcoxon test. For Laser dataset, the statistical test is applied
to the results obtained for each of the 10 models of the ensembles. Exploiting
the privileged information decreases the classification error approximately by
3%, MAE approximately by 5% and MMAE by about 2%. The improvement
on Laser data is significant, both the MZE and MAE decreased by up to about
17% and MMAE decreased by up to about 46%, the differences being found
statistically significant.

4 Conclusion

How to utilize all available information during training to improve generalization
performance of a learning algorithm is one of the main research questions in
machine learning. This paper presents a new methodology called SVORIM+,
for utilizing privileged information of the training examples, unavailable in the
test regime, to improve generalization performance in ordinal regression. The
proposed approach incorporates the privileged information into support vector
ordinal regression by constructing correcting functions for each hyperplane. The
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Table 3: Test Results of the two algorithms on time series datasets
Datasets Criteria SVORIM SVORIM+ p−value

MZE 0.5884± 0.1470 0.5640±0.1311 0.0263•
FSTE 100 MAE 0.6799±0.2672 0.6425±0.2291 0.1493◦

MMAE 0.7528±0.2409 0.7294±0.2610 0.0745◦
MZE 0.6428±0.1348 0.6040±0.1155 0.1250◦

Wine MAE 0.7804±0.1336 0.7194±0.1557 0.0156•
MMAE 0.9871±0.1061 0.9258±0.1368 0.0625◦
MZE 0.5724±0.0497 0.5502±0.0344 0.2187

SOI MAE 0.6354±0.0649 0.6017±0.0470 0.2187
MMAE 0.8549±0.0919 0.8380±0.0548 0.2187
MZE 0.0554 0.0460 0.0098•

Laser MAE 0.0558 0.0460 0.0040•
MMAE 0.0852 0.0454 0.0019•
MZE 0.6333± 0.1076 0.6017± 0.1531 0.5000

Birth MAE 0.7778± 0.1834 0.6972± 0.1708 0.1406◦
MMAE 1.0083± 0.2362 0.8696± 0.2001 0.0156•

experimental results on several benchmark and time series datasets confirmed
that the generalization performance of SVORIM+ can indeed be superior to
that of SVORIM. This is so even though the test inputs for both approaches are
exactly the same – the only difference is that during the training SVORIM+ is
able to model the slack variable values through correcting functions operating
in the privileged space. However, compared with SVORIM, SVORIM+ requires
longer training time because there are more hyper-parameters to tune. Making
SVORIM+ training more efficient is a matter for our future work.
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