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Abstract. CRFs are discriminative undirected models which are glob-
ally normalized. Global normalization preserves CRFs from the label
bias problem which most local models suffer from. Recently proposed
co-occurrence rate networks (CRNs) are also discriminative undirected
models. In contrast to CRFs, CRNs are locally normalized. It was estab-
lished that CRNs are immune to the label bias problem even they are local
models. In this paper, we further compare ECRNs (using fully empirical
relative frequencies, not by support vector regressionl) and CRFs. The
connection between Co-occurrence Rate, which is the exponential function
of pointwise mutual information, and Copulas is built in continuous case.
Also they are further evaluated statistically by experiments.

1 Introduction

Many fundamental applications in natural language processing, computer vision
and bioinformatics desire structured outputs rather than a single tag. Condi-
tional random fields [1] are discriminative undirected graphical models which
output structured tags conditioned by observations. CRFs avoid weaknesses of
existing models, such as hidden Markov models and conditional Markov models
[2]. Hidden Markov models assume unnecessary independence realtions between
observations, and conditional Markov models suffer from the label bias problem.
CRF's address the label bias problem by global normalization in which the global
joint probability is normalized. But global normalization brings up the problem
of inefficient training. [3] proposed co-occurrence rate networks (CRNs) which
are also discriminative undirected models. In contrast to CRFs, CRNs can be
locally normalized. It was established in [3] that CRNs also avoid the strong
independence assumption of hidden Markov models and the label bias problem
of conditional Markov models even they are locally normalized. Hence CRNs are
promising models which can be trained much more efficiently while preserving
high accuracy. In this paper, we further compare CRFs and ECRNs (using em-
pirical relative frequencies) experimentally. Their differences are clarified. And
we futher evaluate performance statistically by experiments. In the remainder
of this section we briefly introduce CRFs and ECRNs. In this paper we focus
on chain-structured graphs.

*We thank the three reviewers for their very helpful comments. This work has been sup-
ported by the Dutch national program COMMIT/.
1This is different from our another later paper, in which we use support vector regression.
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1.1 CRFs

The factorization of CRF's are based on the Hammersley-Clifford theorem (HCT).
Hammersley-Clifford theorem implies a joint distribution can be written as a
product of non-negative functions (called potential functions) over cliques. Ap-
ply this result to chain-structured graphs, we obtain the following factorization:

1 n n—1
P(S1, S0y S | 0) = 7= [ [ #1(5i, 0) [T (55, 8141, 0); (1)
i=1 j=1
n n—1
Zo= Y ([T#S:0) []%i(S,841,0). (2)
S1,S2,...,S, i=1 j=1

S = (51,852, ...,5,) is a tag sequence and O is a observation sequence. We use
p(X) to denote probability mass function (pmf) of discrete X. Zo is a global
normalization to ensure p is a probability mass function. Note that there is
no pmf constraints on the local factors ¢ and . They are just non-negative
functions. In graphical models, the factors ¢ and 1 are traditionally modeled by
exponential functions. For example, ¢;(S;,0) = exp > ; A;[f;, (i, O)], denoted
by E(S;,0). [fj,(Si,0)] is a indicator function which equals 1 if feature f;
occurs on (S, 0); Otherwise, it equals 0. Suppose the training dataset consists
of N pairs of tag and observation sequences: D = {(s% 0%) |i =1,..., N}. Then
the likelihood function over D is:

N N |s’ ls?|—1

\
Lonr(D) =TT p(s'10) = TTi [T BGsiof) TT Blshosiin ol ()
° J k=1

i=1 i=1 j=1

|s?| is the length of the tag sequence s?, which must be equal to |of| . A maximal
likelihood estimate (mle) can be obtained by maximizing the logarithm function
of Eq. (3).

1.2 CRNs

The factorization of co-occurrence rate networks (CRNs) are based on the con-
cept of co-occurrence rate (CR) and its two theorems [3]. [4] provides more details
about the properties of co-occurrence rate.

Definition 1 (Co-occurrence Rate).

_ p(X17X27 7Xn)
— p(X1)p(X2)..p(Xn)

CR(X7; Xo;...; X3) (4)

Theorem 1 (Partition Operation).
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Theorem 2 (Reduce Operation). If X 1 Y | Z, then CR(X;Y Z) = CR(X; Z).

Using CR, a chain-structured graph can be factorized as follows [3]:

n n—1
p(S1, Sa..., S 1 0) = [ p(Si | O) [] CR(Sj3 Sj4110), (5)
i=1 j=1

where CR(S};5j4+1]|0) = % p(S;|0) in Eq. (5) is a probability mass
function. Hence it can be locally normalized. This is different from ¢;(S;, O)
in Eq. (1), for which there is not necessarily a probability mass function. Also
there is no Zp in Eq. (5). Hence the global normalization can be avoided.

The more interesting is the quantity CR(S;;.S;41|0). By definition, CR is not
a probability mass function. Because its value can be greater than 1. Hence we
cannot do local normalization over CR(S;, Sj41|O). Without the normalization,
if we maximize the likelihood function, the factors will grow to +o00. Fortunately,
CR(S;, Sj4+1) has close relation to the concept Copula [5] in statistics. We can
use a similar idea of estimating Copula to estimate CR. In continuous case, the
connection can be built as follows. For convenience, we use (X,Y’) instead of
(Sj,8;+1). Let Fx and Fy be the cumulative distribution functions (cdf) of X
and Y:

Fx:X —[0,1], 2~ P(X <x)
Fy :Y —[0,1], y— P(Y <uy).

Then the bivariate Copula of (X,Y) is defined as the joint cdf of Fx and Fy:
Cry Fy (u,v) = P(Fx < u, Fy <v) (6)

If Eq. (6) is differentiable with respect to Fix and Fy, then we can obtain
the Copula density function:

32

mCFX,FY' (7)

CFx,Fy =

The following formula is a simple variable transformation:

OFx OFx

fX;Y(ny):CFX;FY(FX(x) ( )) E % ( )

X
= crx ry (Fx (2), Fy () fx (2) fy (y),
oFx  0Fx
where | 9% 2, ‘ = fx fy is the Jacobian. Hence we obtain:
09X oY
_ _ _ fX,Y(xay) _
CR(X—I‘,Y—y) _CFX,FY(FX(x)vFY(y))' (8)

- fx(@)fy(y)
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Eq. (8) shows in continuous case CR is just the Copula density function. In
discrete case, CR cannot be the Copula mass function. Because its value can
be greater than 1. But the idea for estimating Copula can still be used for
estimating discrete CR. Estimating Copula implies usually that every marginals
is estimated and plugged into an estimated joint distribution. Following this
idea, [3] plugs the empirical p(X) and p(Y) into p(X,Y’) to obtain CR(X;Y),
where p(X), p(Y) and p(X,Y) are estimated using fully empirical frequencies.

Remark I  CRNs are different from approximate training methods of
CRFs, such as tree-reweighted belief propagation [6] and piecewise training [7, 8].
These methods calculate some approximation of the global partition function.
Calculating the approximation can be much more efficient than calculating the
exact value. CRNs do not calculate the global partition function approximately
or exactly. The factors are trained independently under local constraints. As
long as the local constraints are satisfied, the global constraints are automatically
met. Hence CRNs do not use message passing process which can be used for cal-
culating the global partition function. This distinguishes our method from these
methods. We should emphasize that message-passing is not computationally
demanding. By dynamic programming, its complexity is linear to the sequence
size. Not using message passing cannot be considered as an advantage of CRNs.
We just use it here for distinguishing our method.

Remark IT It seems that we can simply estimate CR in Eq. (5) using
maximum likelihood estimation similar to CRFs. As explained, this does not
work. Because we can not find a local normalization for CR. A normalization
implies constraints. Without these constraints, maximizing the likelihood func-
tion leads CR growing to +o0o. Of course we can use the global normalization to
constrain CR. Then we go back to CRFs. The purpose of CRNs is to estimate
factors independently.

2 Experiments

We adopt CRF++ version 0.57 [9] as the implementation of CRFs. We im-
plement ECRNs in Java. We compare CRFs and ECRNs on two real-world
datasets. The first one is a part-of-speech (POS) tagging dataset. In POS tag-
ging, each word in a sentence is assigned a POS tag. The second dataset is for
named entity recognition (NER). In NER, each word in a sentence is assigned
with a NER tag which indicates if it is a organization, location or person. These
two applications can be well modelled as sequence labeling tasks.

The Brown corpus are used for POS tagging. This corpus includes 34,623
sentences and 252 different POS tags. We use the same spelling features as those
described by [1]. We use half of the dataset for training and the rest half for
testing. We use the the Dutch part of CoNLL-2002 NER Corpus? for NER.
There are three files in this corpus: ned.train (13,221) for training, ned.testa
(2,305) for development and ned.testb (4,211) for testing. There are 9 different
NER tags.

2http://www.cnts.ua.ac.be/conll2002/ner/
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POS NER
CRF | 1,064,384 | 794
ECRN 3.3 1.3

Table 1: Training Time In Seconds

Tab. (1) lists the training time token by CRF and ECRN. There is no doubt
that ECRNs reduce training time radically.

2.1 Statistical Evaluation On Results

As described, the whole POS tagging dataset (34,623 sentences) is split into two
half parts: training part (17,311 sentences) and test part (17,312 sentences). To
obtain confidence intervals on the results, we further partition the test dataset
into 43 parts, and each part includes 400 sentences. Tab. (2) shows the 95%
t-intervals of the total, known and unknown accuracy.

% Total Known Unknown
CRF 93.26 =0.30 | 95.25 +0.21 | 63.21 £ 2.05
ECRN | 94.194+0.26 | 96.36 £+ 0.22 61.5+1.94

Table 2: 95% t-interval Of Accuracy On POS Tagging

Total accuracy is the per-word accuracy including both known and unknown
words. Known words are those appear in the training dataset. Unknown words
are those have not been seen in the training dataset.

The test dataset of NER has 4,211 sentences. Similar to POS tagging ex-
periment, we further partition the NER test dataset into 21 parts and each part
has 200 sentences. Tab. (3) shows the 95% t-intervals of F1, precision and recall
over these test parts.

% F1 Precision Recall
CRF 64.66 +=3.61 | 71.31 £4.46 | 59.52 £ 3.41
ECRN | 64.97 +£2.60 | 80.15+2.32 | 54.87 +2.96

Table 3: 95% t-interval On NER Dataset

F1 is a popular metric for evaluating NER results which is the harmonic mean
of precision and recall. In other words, F1 measures the overall performance
which considers both precision and recall. Precision is the number of correctly
predicted named entities divided by the number of predicted named entities. And
recall is the number of correctly predicted named entities divided by number of
total named entities. From Tab. (3), we can see that CRF and ECRN have
very close F1 scores. But on precision, ECRN performs significantly better than
CRF. On recall, in contrast CRF is much better than ECRN.
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3 Conclusions And Future Work

We compared the local models (i.e. ECRNs) and the global models (i.e. CRFSs)
theoretically and experimentally. We conclude that the local models can be
trained much faster than global models and also obtain competitive results on
overall performance (Total accuracy in POS tagging and F1 in NER). In this pa-
per, we use the fully empirical relative frequencies as the estimation of marginals
and CR’s. In future, we will employ more sophisticated regression models such
as lasso, support vector regression or kernel smoothing methods.
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