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Abstract. We propose an agglomerative hierarchical kernel spectral
clustering (AH-KSC) model for large scale complex networks. The kernel
spectral clustering (KSC) method uses a primal-dual framework to build
a model on a subgraph of the network. We exploit the structure of the
projections in the eigenspace to automatically identify a set of distance
thresholds. These thresholds lead to the different levels of hierarchy in
the network. We use these distance thresholds on the eigen-projections of
the entire network to obtain a hierarchical clustering in an agglomerative
fashion. The proposed approach locates several levels of hierarchy which
have clusters with high modularity (Q) and high adjusted rand index (ARI)
w.r.t. the groundtruth communities. We compare AH-KSC with 2 state-
of-the-art large scale hierarchical community detection techniques.

1 Introduction
In the modern era large scale complex networks are predominantly visible in
social networks, collaboration networks, financial networks, biological networks
etc. These complex networks show community like structures. This means
that nodes of one community are more densely connected to nodes within the
community and sparsely connected to other nodes. The problem of community
detection has received wide attention [1] and two state-of-the-art large scale
hierarchical community detection techniques are the Louvain method [2] and
the Infomap method [3]. However, these techniques suffer from a resolution
limit i.e. they prevent the detection of high quality clusters of finer granularity
which is also shown by our experiments.

Recently a kernel spectral clustering (KSC) method for big data networks
was proposed in [4]. The method works by building a model on a representative
subgraph of the large network. This subgraph is obtained by the Fast and
Unique Representative Subset (FURS) selection technique as proposed in [5].
This subset is used to build the KSC model. The model requires a kernel function
which can have parameters and needs to identify the number of clusters k in the
network. A self-tuned KSC model for big data networks was proposed in [6].
The power of the KSC method is that it creates a model which can be used for
out-of-sample extensions. Thus, we can infer community affiliation for unseen
nodes of the large scale network using this model.

The goal of hierarchical clustering is to locate multiple levels of hierarchy in
the network with high quality clusters at each level. In this paper we exploit the
structure of the eigen-projections corresponding to the validation set of nodes
to obtain a set of distance thresholds (T ). These distance thresholds (t ∈ T )
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are used on the projections of the entire network which is obtained by the out-
of-sample extensions of the KSC model. We then perform an agglomerative
hierarchical clustering using T to produce good quality clusters at multiple levels
of hierarchy. Hence our approach doesn’t suffer from resolution limit problem.

2 Kernel Spectral Clustering (KSC)
We briefly describe the KSC method for large scale networks. A network is
represented as a graph G(V,E) where V denotes vertices and E the edges. For
large scale networks, the training data comprise the adjacency list of all the
nodes vi, i = 1, . . . , Ntr. Training, validation and test set of nodes are given by
the Vtr, Vvalid, Vtest with cardinality Ntr, Nvalid and Ntest respectively. These
adjacency lists can efficiently be stored in the memory as real world networks
are highly sparse and have limited connections for each node.

For Vtr training nodes the dataset is given by D = {xi}Ntr
i=1, xi ∈ R

N . Given
D and a user-defined maxk (maximum number of clusters in the network), the
primal formulation of the weighted kernel PCA [8] is given by:

min
w(l),e(l),bl

1
2

maxk−1∑

l=1

w(l)ᵀ
w(l) − 1

2Ntr

maxk−1∑

l=1

γle
(l)ᵀ

D−1
Ω e(l)

such that e(l) = Φw(l) + bl1Ntr
, l = 1, . . . , maxk − 1

(1)

where e(l) = [e(l)
1 , . . . , e

(l)
Ntr

]ᵀ are the projections onto the eigenspace, l = 1, . . . , m-
axk − 1 indicates the number of score variables required to encode the maxk
communities, D−1

Ω ∈ R
Ntr×Ntr is the inverse of the degree matrix associated to

the kernel matrix Ω with Ωij = K(xi, xj) = φ(xi)ᵀφ(xj). Φ is the feature matrix
such that Φ = [φ(x1)ᵀ; . . . ;φ(xNtr

)ᵀ] and γl ∈ R
+ is the regularization constant.

We note that Ntr � N i.e. the number of nodes in the training set is much
less than the total number of nodes in the large scale network. Each element
of kernel matrix Ω is taken as Ωij = xᵀ

i xj

‖xi‖‖xj‖ and is calculated using notions of
set intersection and union as shown in [6]. The primal clustering model is then
represented by: e

(l)
i = w(l)ᵀ

φ(xi)+ bl, i = 1, . . . , Ntr, where φ : R
N → R

N and bl

are the bias terms, l = 1, . . . , maxk − 1. For large scale networks we can utilize
the explicit expression of the underlying feature map as shown in [6]. The dual
problem corresponding to this primal formulation is:

D−1
Ω MDΩα(l) = λlα

(l), (2)

where MD is the centering matrix which is defined as MD = INtr
−(

(1Ntr 1ᵀ
Ntr

D−1
Ω )

1ᵀ
Ntr

D−1
Ω 1Ntr

).

The α(l) are the dual variables and the positive definite kernel function K :
R

N × R
N → R plays the role of similarity function. The corresponding predic-

tive model is ê(l)(x) =
∑Ntr

i=1 α
(l)
i K(x, xi)+bl which provides clustering inference

for adjacency list x corresponding to each test node v ∈ Vtest.

3 Agglomerative Hierarchical Clustering
In [6], an affinity matrix Avalid was created using the latent variable matrix
Evalid = [e1, . . . , eNvalid

]ᵀ which is a Nvalid × (maxk − 1) matrix, as:
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Avalid(i, j) = CosDist(ei, ej) = 1 − cos(ei, ej) = 1 − eᵀ
i ej

‖ei‖‖ej‖ . (3)

The CosDist(·, ·) function takes values between [0, 2]. The nodes which belong
to the same cluster will have smaller CosDist(ei, ej),∀i, j in the same cluster.
It was shown in [6] that a rotation of the Avalid matrix has a block diagonal
structure. This block diagonal structure was used to identify the ideal number
of clusters k in the network using the concept of entropy and balanced clusters.

3.1 Finding Distance Thresholds using Validation Set
In our proposed approach we refer to the affinity matrix at level 0 of hierarchy
as A

(0)
valid. After obtaining this matrix as in [6], we perform an agglomerative hi-

erarchical clustering in a bottom up fashion. After several empirical evaluations,
we set t(0) = 0.15 for lowest level of hierarchy to make the approach tractable
to large scale networks. We greedily select the validation node with maximum
number of similar nodes in the latent space i.e. we select the projection ei which
has a maximum number of projections ej satisfying A

(0)
valid(i, j) < t(0). We put

the indices of these nodes in C
(0)
1 representing the 1st cluster at level 0. We then

remove these nodes and corresponding entries from A
(0)
valid to obtain a reduced

matrix. This process is repeated recursively until A
(0)
valid becomes empty. Thus,

we obtain the set C(0) = {C(0)
1 , . . . , C

(0)
q } where q is the maximum number of

clusters at level 0 of the hierarchy. The set C(0) has clusters containing the
indices of the nodes belonging to those clusters.

To obtain the clusters at the next level of hierarchy we treat the communities
at the previous levels as nodes. We then calculate the average cosine distance
between these nodes using the information present in these nodes. We create a
new affinity matrix at each level (h) as:

A
(h)
valid(i, j) =

∑
k∈C

(h−1)
i

∑
l∈C

(h−1)
j

A
(h−1)
valid (k, l)

|C(h−1)
i | × |C(h−1)

j |
, (4)

where | · | represents the cardinality of the set. We estimate the minimum cosine
distance between each individual cluster and the other clusters (not considering
itself). We then select the mean of these values as the new threshold for that
level to combine clusters. This is because if we consider the minimum of all the
distance values then there is a risk of only combining 2 clusters at that level.
However, it is desirable to combine multiple sets of different clusters. Thus, the
new threshold t(h) at level h is set as: t(h) = mean(minj(A

(h)
valid(i, j))), i �= j.

We use this process iteratively till we have 1 big cluster containing all the nodes.
As a consequence we obtain the hierarchical clustering C = {C(0), . . . , C(maxh)}
where maxh is the maximum level in the hierarchy and is obtained automatically.
We also obtain a set of distance thresholds T = {t(0), . . . , t(maxh)}.
3.2 Hierarchical Clustering of Test nodes
We use the entire network as test set. The latent variable matrix for the test
set obtained by out-of-sample extensions is defined as Etest = [e1, . . . , eNtest

]ᵀ
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with time complexity O(Ntr ×Ntest). We can store this Etest matrix in memory
but cannot create an affinity matrix of size Ntest × Ntest (Ntest � Ntr) due
to memory constraints. As the validation set is a representative subset of the
whole network [5], the threshold set T can be used to obtain a hierarchical
clustering for the entire network. To make the proposed approach self-tuned we
use t(i) > t(0) > 0.15, i > 0, in the test phase.

In order to avoid creating the affinity matrix for the large network we take the
projection of the first test node and calculate its similarity with the projections
of all the test nodes. We then locate the indices (j) of those projections s.t.
CosDist(e1, ej) < t(1) and put them in cluster C

(1)
1 . Since t(1) > 0.15, typically

the number of computations required to construct C
(1)
1 is O(p × Ntest) where

p � Ntest. We then remove entries corresponding to those projections in Etest

to obtain a reduced matrix. We perform the procedure recursively until Etest

is empty to obtain C(1) = {C(1)
1 , . . . , C

(1)
p } where p is the maximum number of

clusters at hierarchical level 1. After 1st level we use the same procedure as
for validation set i.e. creating an affinity matrix at each level using the cluster
information along with the threshold set T to obtain the hierarchical structure
in an agglomerative way. The cluster memberships are propagated iteratively
from 1st level to highest level of hierarchy. We illustrate this test phase on a
synthetic network with 10, 000 nodes in Figure 1.

Fig. 1: Affinity matrices for levels of hierarchy on test set

3.3 Experiments
We generated synthetic benchmark networks Net1, Net2, Net3 and Net4 with
2, 000, 10, 000, 50, 000 and 250, 000 nodes respectively from the toolkit proposed
in [7]. Figure 2 plots the original synthetic network and the network estimated by
proposed approach for 10, 000 nodes. This toolkit generates benchmark networks
with only 2 levels of hierarchy using different mixing parameter μ1 and μ2 for
macro and micro communities respectively. We fixed μ1 = 0.1 and μ2 = 0.2 in
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Fig. 2: Original hierarchical network (left) and estimated hierarchical network
(right) for synthetic network with 10, 000 nodes. The orientation and position of
the communities might vary in the two plots. Both plots have 3 clusters with 6
micro communities, 3 clusters with 5 micro communities, 6 clusters with 4 micro
communities and 2 clusters with 3 micro communities.

our experiments. We evaluated the quality of the communities using external
quality metrics like adjusted rand index (ARI) and variation of information (V I)
and internal quality metrics like modularity (Q) and cut-conductance (CC).

Table 1 provides the top 10 levels of hierarchy for these 4 synthetic networks
by our proposed approach referred as AH-KSC. The actual number of clusters
at the 2 levels of hierarchy for Net1, Net2, Net3 and Net4 are (37, 9), (63, 14),
(141, 13) and (64, 15) respectively. Table 1 shows that AH-KSC not only detects
these 2 groundtruth clusters in most cases but also extracts several other mean-
ingful levels of hierarchy. Due to space limitations we restrict the results to the
2 best levels of hierarchy w.r.t. various quality metrics. Table 2 also shows a
comparison with the Louvain (LOU) and Infomap (IMAP) methods. We report
the mean results for LOU and IMAP over 10 iterations. In Table 2, k1 and k2

are the best match for various methods w.r.t. the 2 level of groundtruth clusters.

HierarchyNet1 (k)Net2 (k)Net3 (k)Net4 (k)
10 - 84 134 -
9 - 80 112 250,000
8 2,000 76 106 982
7 63 70 103 541
6 40 63 97 400
5 39 30 87 187
4 37 14 44 66
3 15 12 13 9
2 9 2 5 2
1 1 1 1 1

Table 1: Number of clusters (k) for top 10 levels of hierarchy by AH-KSC
method. The number of clusters close to the true number of clusters are high-
lighted. The AH-KSC method provides more insight by identifying several mean-
ingful levels of hierarchy with good quality clusters w.r.t. quality metrics like
ARI, V I, Q and CC.
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From Table 2 we observe that the Louvain method works better when the
number of clusters is small but fails to effectively find clusters of finer granularity.
The Infomap method is the weakest among the 3 methods. However, AH-KSC
can identify granular clusters of high quality as can be observed for Net1, Net2
and Net3 along with obtaining good quality clusters at coarser levels. From
Table 2 we also observe that the Q metric is biased towards small clusters and
CC is biased towards a large number of communities.

Dataset Methods k2 ARI2 k2 V I2 k2 Q2 k2 CC2 k1 ARI1 k1 V I1 k1 Q1 k1 CC1
AH-KSC 37 1.00 37 0.00 15 0.77 63 4.7e-4 9 1.00 9 0.00 9 0.79 39 4.8e-4

Net1 LOU 32 0.84 32 0.22 32 0.69 32 4.7e-4 9 1.00 9 0.00 9 0.79 9 4.9e-4
IMAP 8 0.32 8 1.52 8 0.77 8 0.5e-4 8 0.92 8 0.13 6 0.49 6 0.5e-4

AH-KSC 76 0.99 76 0.02 14 0.83 146 9.5e-5 14 1.00 14 0.00 12 0.81 95 9.7e-05
Net2 LOU 52 0.75 52 0.35 15 0.82 52 9.8e-5 14 1.00 14 0.00 14 0.83 14 9.9e-5

IMAP 13 0.32 13 1.58 13 0.82 249 9.8e-5 13 0.95 13 0.08 6 0.52 13 9.8e-5
AH-KSC 134 0.68 134 0.61 44 0.77 134 1.98e-5 13 1.00 13 0.00 13 0.82 103 1.99e-5

Net3 LOU 135 0.85 135 0.19 20 0.81 135 1.98e-5 13 1.00 13 0.00 13 0.82 13 2.0e-5
IMAP 13 0.16 13 2.38 14 0.62 590 1.97e-5 13 1.00 13 0.00 13 0.82 13 2.0e-5

AH-KSC 187 0.43 187 1.22 197 0.73 982 3.93e-6 66 0.86 66 0.49 66 0.77 541 3.96e-6
Net4 LOU 19 0.39 19 1.3 19 0.81 19 3.99e-6 15 1.00 15 0.00 15 0.83 15 3.99e-6

IMAP 11 0.21 11 1.87 6,869 0.2 6,869 4.0e-5 11 0.68 11 0.42 11 0.78 11 4.0e-15

Table 2: Evaluation of clusters by different hierarchical methods

4 Conclusion

We proposed AH-KSC for large scale networks exploiting the structure of the
projections in the eigenspace using a set of distance thresholds (T ). The pro-
posed method overcomes the resolution limit problem and can locate high quality
communities at finer levels of granularity.

Acknowledgements: The work is supported by Research Council KUL, ERC AdG A-
DATADRIVE-B, GOA/10/09MaNet, CoE EF/05/006, FWO G.0588.09, G.0377.12, SBO POM,
IUAP P6/04 DYSCO.

References

[1] U. von Luxburg A tutorial on Spectral clustering. Statistics and Computing, 17(4):395-
416, 2007.

[2] V. Blondel, J. Guillaume, R. Lambiotte and L. Lefebvre, Fast unfolding of communities
in large networks. J. of Statistical Mechanics: Theory and Experiment, 10:P10008, 2008.

[3] M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal com-
munity structure. PNAS, 105:1118-1123, 2008.

[4] R. Mall, R. Langone and J.A.K. Suykens, Kernel Spectral Clustering for Big Data Net-
works, Entropy (Special Issue: Big Data), 15(5):1567-1586, 2013.

[5] R. Mall, R. Langone and J.A.K. Suykens, FURS: Fast and Unique Representative Subset
selection retaining large scale community structure, Social Network Analysis and Mining,
3(4):1075-1095, 2013.

[6] R. Mall, R. Langone and J.A.K. Suykens, Self-Tuned Kernel Spectral Clustering for Large
Scale Networks, Proceedings of the IEEE International Conference on Big Data, (IEEE
BigData 2013), October 6-9, Santa Clara (U.S.A), 2013.

[7] S. Fortunato, Community detection in graphs. Physics Reports, 486:75-174, 2009.

[8] C. Alzate, J.A.K. Suykens, Multiway spectral clustering with out-of-sample extensions
through weighted kernel PCA. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(2):335-347, 2010.

358

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.




