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Abstract. The problem of outlier detection consists in finding data
that is not representative of the population from which it was ostensibly
derived. Recently, to solve this problem, Liu et al. [1] proposed a two
steps hypersphere-based approach, taking into account a confidence score
pre-calculated for each input data. Defining these scores in a first step,
independently from the second one, makes this approach not well-suited
for large stream data. To solve these difficulties, we propose a global refor-
mulation of the support vector data description (SVDD) problem based on
the L0 norm, well suited for outlier detection. We demonstrate that this
L0-SVDD problem can be solved using an iterative procedure providing
data specific weighting terms. We show that our approach outperforms
state of the art outlier detection techniques using both synthetic and clin-
ical data.

1 Introduction

The challenging topic of outlier detection has gained increasing interest in su-
pervised classification due to the difficult task of labelling samples in most appli-
cation domains. In medical imaging, for instance, one major bottleneck to the
development of computer assisted diagnosis (CAD) systems is building training
databases where abnormal signals in the image are non-invasively associated with
their corresponding histopathological ground truth. Outlier detection methods
consist in learning the compact representation domain of a normal class, in view
of predicting whether a test sample belongs to this compact description. One
classical approach is the SVDD [2], which hypothesizes that the normal data be-
long to a hypersphere characterized by a center c and a radius R. Optimal c and
R are obtained by solving the following constraint-based optimization problem,
for properly chosen positive parameters C and m:

min
R,c,ξ

R+ C
n∑
i=1

ξi

with ‖xi − c‖2 ≤ m+R+ ξi, i = 1, . . . , n
and ξi ≥ 0, i = 1, . . . , n

(1)

∗This work was performed within the framework of the LABEX PRIMES (ANR-11-LABX-
0063) of Université de Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX-
0007) operated by the French National Research Agency (ANR). We thank Alexander Ham-
mers from the Neurodis Foundation and Nicolas Costes from the CERMEP for providing the
MRI data and for useful discussions.
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where (xi) i=1,..,n are training samples from the normal class, xi ∈ Rp and ξi are
slack variables allowing to relax the constraints. When m = 0, problem (1) is
the original SVDD formulation. The margin parameter m is added to deal with
outlier detection, since it allows to set a confidence margin around clustered data
(see fig. 1). As the formulation in (1) is based on a L1-norm cost function, the
presence of uncertain samples xj will generate high values of ξj and result in a
significant increase of the second term in equation 1. Fig. 1 shows an illustrative
example of the impact of such an outlier normal point on the prediction of the
hypersphere decision boundary: for small values of C, the solution provided by
the m-SVDD addresses the problem of outlier detection but at the cost of a large
number of support vectors and thus does not scale.

C =1/16 C =1/8 C =1/4 C = 1/2 (¾')

Fig. 1: Example of SVDD solutions with different C values, m = 0 (red) and
m = 5 (magenta). The circled data points represent support vectors for both m.

There have been different attempts to improve the SVDD performance in
the presence of uncertain data. Liu et al. [1] recently proposed to constrain the
impact of the ξi in equation 1. Using the reference intrusion detection database,
the authors showed that their approach outperforms the standard SVDD and
the alternate density-induced SVDD [3]. These two approaches attempt to bet-
ter control the weight of uncertain data on the cost function either by adding
individual weighting terms on the ξi [1] or by considering data specific slack
variables ξi [3]. In this paper, we propose to consider the L0 cost function as an
alternative to the L1-norm in the SVDD formulation. The rational is to alleviate
the influence of uncertain data by assigning them a cost of C instead of Cξi.

In the following, we first define the proposed L0-SVDD problem and dis-
cuss the associated quadratic problem formulation. We then present results
on a synthetic dataset and a real clinical application related to the detection of
epileptogenic foci in MRI-based neuroimaging data. The L0-SVDD performance
is compared to that achieved by the SVDD formulation proposed by Liu.

2 Method description

We consider the problem of detecting outliers from a set of n observations of
p dimensional vectors stored in X a n × p matrix. Regarding the outlier de-
tection problem, it looks relevant to consider the zero-norm cost function [see
for instance 4, for more detailed justifications]. The L0 pseudo-norm is defined
as ‖x‖0 = card{i|xi 6= 0}. The advantage of taking such a non convex cost is
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well motivated for instance in [5] were it is shown that the resulting estimator
is asymptotically unbiased. Based on this cost design for outlier detection, we
propose to define the L0-SVDD problem as follows, for a given positive C:

min
c∈IRp,R∈IR,ξ∈IRn

R+ C‖ξ‖0
with ‖xi − c‖2 ≤ R+ξi

ξi ≥ 0 i = 1, n

Unfortunately the L0 pseudo-norm is non differentiable, combinatorially hard,
and does not lead to an effective algorithmic approach. In fact, to obtain an
efficient technique for solving this problem, two key insights are needed. The
first key step is, following [6], to replace the L0 pseudo-norm by its logarithmic
approximation leading to the following problem, for given parameters C and γ 1:

min
c∈IRp,R∈IR,ξ∈IRn

R+ C
n∑
i=1

log(γ + ξi)

with ‖xi − c‖2 ≤ R+ξi
ξi ≥ 0 i = 1, n .

This problem remains non convex. Our second key idea is to solve this
problem by using an iterative procedure solving at each iteration a convex QP
problem, resulting from the decomposition of the non-convex function as a dif-
ference of convex functions (DC) [7][8]. In our case this decomposition is of the
form:

log(γ + t) = f(t)− g(t) with f(t) = t and g(t) = t− log(γ + t),

both functions f and g being convex. The DC framework consists in minimizing
iteratively (R plus a sum of) the following convex term:

f(ξ)− g′(ξ)ξ = ξ −
(
1− 1

γ + ξold

)
ξ =

ξ

γ + ξold
,

where ξoldi denotes the solution at the previous iteration.
The DC idea applied to our L0-SVDD approximation consists in building a

sequence of solutions of the following adaptive SVDD:
min

c∈IRp,R∈IR,ξ∈IRn
R+ C

n∑
i=1

wiξi

with ‖xi − c‖2 ≤ R+ξi
ξi ≥ 0 i = 1, n

with wi =
1

γ + ξoldi
.

Stationary conditions of the KKT give: c =
∑n
i=1 αixi and

∑n
i=1 αi = 1, where

αi is the Lagrange multiplier associated with the inequality constraint ‖xi−c‖2 ≤
R + ξi. The dual of this problem is [see for instance 1]:{

min
α∈IRn

α>XX>α− α>diag(XX>)

with
∑n
i=1 αi = 1 0 ≤ αi ≤ Cwi i = 1, n

(2)

1Note that setting γ to one would be enough to perform the L0 norm approximation.
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This is a classical QP with box constraints that can be solved efficiently using for
instance an effective active set solver2 [9]. Note that if λ denotes the Lagrange
multiplier associated with the equality constraint

∑n
i=1 αi = 1, we can see that

R = λ+ c>c by calculating the dual of (2), that is the bidual.
Put all together, this leads to the following algorithm 1.
Data: X, y, C , γ
Result: R , c, ξ , α
wi = 1; i = 1, n;
while not converged do

(α, λ)← solve_QP(X,C,w) % solve problem (2)
c ← X>α;
R← λ+ c>c;
ξi ← max(0, ‖xi − c‖2 −R) i = 1, n;
wi ← 1/(γ + ξi) i = 1, n;

end
Algorithm 1: L0-SVDD for the linear kernel

The kernelization of this algorithm is straight forward by using the kernel
trick and associated representer theorem (not included here due to lack of space).

3 Experiments

3.1 Synthetic data results

Learning dataset: We generated learning examples for the normal class
by drawing n = 25 pseudo-random normally distributed samples of dimension
p = 2. The mean was set to 1 for the first dimension and to 2 for the second
dimension. To simulate the presence of outliers in the learning dataset, we added
examples that fall outside the normal class distribution range (see Fig. 2 left).
The hyper-parameters were fixed as follows: γ = 1, nb_iter = 3 and C = 0.4.

Prediction results: Fig. 2 (left), shows that 1) the L0-SVDD decision bound-
ary best fits the learning data 2) the Liu-SVDD sphere center is still influenced
by the outlier example. Note that the standard SVDD cannot be tuned to match
the results (cf. fig. 1).

3.2 Realistic data results

We compared the performance of the Liu-SVDD and the L0-SVDD methods in
detecting abnormalities in brain magnetic resonance images (MRIs) of patients
suffering from intractable epilepsy on a voxelwise basis.

Learning database: In [10], we recently showed that two parametric maps
extracted from the MR scans, namely the junction and extension maps help
discriminating between controls and patients suffering from intractable epilepsy.

2available at asi.insa-rouen.fr/enseignants/~arakoto/toolbox

392

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



Fig. 2: Predictive models obtained using synthetic and realistic learning exam-
ples with an outlier.

For each voxel k from the brain MR scan, two classifiers, L0-SVDD and Liu-
SVDD were trained using the matrix Xk ∈ Mn,p(R), n = 29 and p = 2. The
value C = 0.6 was obtained from a leave one voxel out procedure for C values
in [0.1 : 0.1 : 1]. The optimization was only performed on a subset of 4000
voxels, randomly selected from the whole brain (1.5 million voxels) to reduce
computational cost. The analysis of the training data inMk indicated that some
clusters of voxels contained uncertain data resulting from artefacts in the original
scan or from image processing issues. Fig. 2 (right) illustrates the presence of
such uncertain data in a voxel belonging to the cluster highlighted in green in
Fig. 3 (left). The distribution of the two features (junction and extension) was
computed over the 29 control subjects from the learning database.

Test data: In the MRI of a control subject, at the known location of uncertain
‘normal’ data, we simulated an heterotopy like lesion (Fig. 3 (left)), which is an
abnormal extension of the grey matter into the white matter. We locally changed
the grey level values of the voxels within the white matter in the original MRI,
to make them correspond to the grey matter distribution.

Prediction results: Fig. 3 shows that the L0-SVDD classifier detected most
of the lesion (DICE of 80% for the example slice in Fig. 3 and 53% for the
whole lesion) while the Liu-SVDD classifier failed in retrieving the lesion (DICE
of 0%). The lesion detected by L0-SVDD is bigger than the real lesion due to
smoothing in the pre-processing steps.

4 Conclusion

The conducted experiments on synthetic and realistic clinical data show that,
unlike state of the art methods, the L0-SVDD approach successfully suppresses
the effect of uncertain data on the predicted decision boundary. Future work will
focus on performing a quantitative analysis as in [1], evaluating the impact of the
parameter γ and analysing convergence properties of the proposed algorithm.
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Fig. 3: Transverse MR slice of the test subject showing: the simulated lesion
highlighted in green in all images, L0-SVDD (middle, in red) and Liu-SVDD
(right, in red) classification results.
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