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Abstract. Stochastic neighbor embedding (SNE) is a method of dimen-

sionality reduction that involves softmax similarities measured between all

pairs of data points. To build a suitable embedding, SNE tries to repro-

duce in a low-dimensional space the similarities that are observed in the

high-dimensional data space. Previous work has investigated the immu-

nity of such similarities to norm concentration, as well as enhanced cost

functions. This paper proposes an additional refinement, in the form of

multiscale similarities, namely averages of softmax ratios with decreasing

bandwidths. The objective is to maximize the embedding quality at all

scales, with a better preservation of both local and global neighborhoods,

and also to exempt the user from having to fix a scale arbitrarily. Ex-

periments on several data sets show that this multiscale version of SNE,

combined with an appropriate cost function (sum of Jensen-Shannon di-

vergences), outperforms all previous variants of SNE.

1 Introduction

Dimensionality reduction (DR) aims at producing faithful and meaningful repre-
sentations of high-dimensional data into a lower-dimensional space. The general
intuition that drives DR is that close or similar data items should be represented
near each other, whereas dissimilar ones should be represented far from each
other. Through the history of DR, authors have formalized this idea of neigh-
borhood preservation in various ways, using several models for the mapping or
embedding of data from the high-dimensional space (HD) to the low-dimensional
one (LD). For instance, principal component analysis (PCA) and classical met-
ric multidimensional scaling (MDS) [1] rely on linear projections that maximize
variance preservation and dot product preservation, respectively. Nonlinear vari-
ants of metric MDS [1, 2, 3] are based on (weighted) distance preservation. The
use of similarities in DR is quite recent and appeared with methods expressed
as eigenproblems, like Laplacian eigenmaps [4] and locally linear embedding [5].
These involve sparse matrices of similarities, also called affinity matrices, defined
in the HD space. Genuine similarity preservation, with similarities in both HD
and LD spaces, appeared later with stochastic neighbor embedding [6] (SNE). In-
terest in this new paradigm grew after the publication of variants such as t-SNE
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[7] and NeRV [8]. These methods significantly outperform older ones in terms
of DR quality. The role played by SNE’s specific similarities has already been
investigated [9], as well as the contribution of improved cost functions [8, 10].

This paper builds upon these previous improvements and proposes a refined
similarity definition, that allows for a multiscale approach of DR. The rationale
is that SNE’s similarities define soft Gaussian neighborhoods and therefore in-
volve a bandwidth that is indirectly chosen by the user, through a perplexity
parameter, while DR should actually deliver optimal results at all scales. To
address this shortcoming of SNE-like methods, this paper introduces general-
ized similarities that are averages of softmax ratios with decreasing bandwidths,
covering all neighborhood sizes, from large to small. At the expense of a mod-
erate computational complexity increase, these new multiscale similarities are
parameter-free and also perform better in experiments.

The rest of this paper is organized as follows. Section 2 defines the pro-
posed multiscale similarities. Section 3 deals with cost functions and their op-
timization. After describing how DR quality is assessed, Section 4 presents and
discusses the experimental results. Finally, Section 5 draws the conclusions.

2 Multiscale softmax similarities

Let Ξ = [ξi]1≤i≤N denote a set of N points in some M -dimensional space.
Similarly, let X = [xi]1≤i≤N be its representation in a P -dimensional space,
with P ≤ M . The squared Euclidean distances between the ith and jth points
are given by δij = ‖ξi − ξj‖

2
2 and dij = ‖xi − xj‖

2
2 in the HD and LD spaces

respectively. Starting from pairwise distances, similarities with L scales can be
defined for i 6= j in the M - and P -dimensional spaces as σij = 1

L

∑L

l=1 σijl and

sij =
1
L

∑L

l=1 sijl, where the single-scale similarities are given by

σijl =
exp(−πilδij/2)∑

k,k 6=i exp(−πilδik/2)
and sijl =

exp(−pildij/2)∑
k,k 6=i exp(−pildik/2)

. (1)

Symbols πil and pil denote the precisions (inverse of the squared bandwidths) of
the ith datum on the lth scale. If i = j, then σijl = sijl = 0 by convention. In
case of a single scale (L = 1), the similarities reduces to those used in SNE. An
important feature of similarities defined as softmax ratios such as above is their
normalization, which grants them a property of shift invariance with respect to
δij and dij [9]. This property is essential to overcome distance concentration.

Each softmax ratio in σij and sij can be interpreted as a probabilistic or

stochastic membership to Gaussian neighborhoods with radii π
−1/2
il and p

−1/2
il .

These radii can reformulated into sizes of soft K-ary neighborhoods by com-
puting entropies and perplexities, namely, Hil = −

∑N

j=1 σijl log σijl and Kil =
expHil. In previous SNE-like methods, the user chooses a unique perplexity
value K0 that is then used to adjust the precision πil of each neighborhood. In
practice, these methods solve logK0 = Hil for 1 ≤ i ≤ N (and l = 1), in order to
have soft neighborhoods with size K0 around each datum. In the proposed mul-
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tiscale approach, several perplexities are fixed beforehand, without any user in-
put. They are given by Kl = 2Lmax−l+1, with 1 ≤ l ≤ L ≤ Lmax = ⌊log2(N/4)⌉.
Upper bound Lmax prevents σijL from getting nearly constant.

In the LD space, the coordinates in X and therefore distances dij are not
determined yet, which forbids identifying precisions pij in the same way as πij in
the HD space. Regular SNE easily circumvent this issue by using unit precisions

(pil = 1 for all i, l = 1). In the multiscale approach, we set pil = K
−2/P
l ,

knowing that in uniform distribution in a P -dimensional space, the number of
neighbors grows like RP , where R is the neighborhood radius.

3 Divergences to measure similarity mismatch

Due to normalization, softmax similarities add up to one, that is,
∑

j σij =∑
j sij = 1. Therefore, σi = [σij ]1≤j≤N and si = [sij ]1≤j≤N can be seen as

discrete probability distributions and divergences can be used to assess their
mismatch. In SNE, the Kullback-Leibler divergence is used. It is defined as
DKL(σi‖si) =

∑
j σij log(σij/sij). The cost function of SNE [6] can then be

written as E(X;Ξ,Λ) =
∑

i DKL(σi‖si). The variant of SNE called NeRV [8]

blends two dual KL divergences. Such a mixture is written as Dβ
KLs1(σi‖si) =

(1 − β)DKL(σi‖si) + βDKL(si‖σi), where parameter β balances both terms.

The cost function is then E(X;Ξ,Λ, β) =
∑

i D
β
KLs1(σi‖si). Another way to

combine KL divergences is given by

Dβ
KLs2(σi‖si) = (1− β)DKL(σi‖zi) + βDKL(si‖zi) , (2)

where zi = (1 − β)σi + βsi. For β = 1/2, D
1/2
KLs2(σi‖si) is known as the type

2 symmetric KL divergence, or symmetric Jensen-Shannon divergence. This
mixture of divergences has been shown to be an effective cost function in a DR
method called Jensen-Shannon embedding (JSE, or ‘Jessie’) [10].

Like JSE, the proposed multiscale approach minimizes (2), with β = 1/2.
The gradient of (2) being complicated, it is not shown here, due to space
limitations. In practice, the limited-memory version of the Broyden-Fletcher-
Goldfarb-Shanno technique (L-BFGS) can minimize (2) very efficiently. Each
step performs an iterative line search using Wolfe conditions. In order to avoid
poor initial guesses of the step size, the search direction is the gradient scaled
with a good approximation of the diagonal of the Hessian matrix.

A multiscale approach slightly increases the computational complexity, com-
pared to regular SNE. Recalling that Lmax = ⌊log2(N/4)⌋, each cost function
evaluation requires a number of operations proportional to N2 logN , instead
of N2. Another issue is the risk of getting stuck in poor local minima, due to
components σijl with low perplexity values (small neighborhoods). After initial-
ization of X with the P first principal component of Ξ, we address this issue by
carrying out a few L-BFGS iterations with L = 1, then a few ones with L = 2,
and so on until we reach L = Lmax and take into account all scales on an equal
footing. This allows us to embed data with a first focus on global structure,
while more and more local details are introduced progressively.
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4 Quality assessment, experiments, and results

Several performance indicators can assess the quality of embeddings produced
by DR methods. However, the consensus that emerges from several publications
is to use the average agreement rate between K-ary neighborhoods in the high-
and low-dimensional spaces [11, 8, 12]. If νKi and nK

i denote the K-ary neigh-
borhoods of vectors ξi and xi, respectively, then the average agreement rate can

be written as QNX(K) =
∑N

i=1 |ν
K
i ∩ nK

i |/(KN). It varies between 0 (empty
intersection) and 1 (perfect agreement). Knowing that random coordinates in
X lead on average to QNX(K) ≈ K/(K − 1) [12], the useful range of QNX(K)
is N − 1 − K, which depends on K. Therefore, in order to fairly compare or
combine values of QNX(K) for different neighborhood sizes, the criterion can be

rescaled to get RNX(K) = (N−1)QNX(K)−K

N−1−K
, for 1 ≤ K ≤ N − 2. This modified

criterion indicates the improvement over a random embedding and has the same
useful range between 0 and 1 for all K. In experiments, the whole curve RNX(K)
is shown, with a logarithmic scale for K. This choice is again justified by the fact
that the sizeK and radius R of small neighborhoods in a P -dimensional space are
(locally) related by K ∝ RP . A logarithmic axis also reflects that errors in large
neighborhoods are proportionally less important than in small ones. Eventually,
a scalar score is obtained by computing the area under the RNX(K) curve in

the log plot, given by AUClogK(RNX(K)) = (
∑N−2

K=1 RNX(K)/K)/(
∑N−2

K=1 1/K).
The AUC assesses DR quality at all scales, with the most appropriate weights.

The experiments involve three data sets, all to be re-embedded in two di-
mensions (P = 2). The first one is a toroidal string, looking like a circular coil
spring (30 coils, M = 3, N = 3000). The second one is the COIL20 image
bank (M = 1282, N = 1440; 20 objects, 72 poses/angles). The third data set
is a random subsample of the MNIST database of scanned handwritten digits
(M = 242, N = 3000; approx. 300 images per digit). All gray-level images are
vectorized and no PCA preprocessing is achieved.

The proposed multiscale JSE is compared to classical metric MDS (CMDS),
non-metric MDS [1] (NMDS), Sammon’s nonlinear mapping [2] (NLM), curvilin-
ear component analysis [3] (CCA), SNE [6], t-SNE [7], NeRV [8], and single-scale
JSE [10]. The target perplexity for SNE, t-SNE, NeRV, and single-scale JSE is
32. For JSE with multiscale similarities (mss), there is no target perplexity.
Figures 1 to 3 report the quality curves and some embeddings.

Classical methods like CMDS, NMDS, and NLM favor the rendering of the
global arrangement of the data sets (peak in the right part of the quality curves).
CCA, SNE, NeRV, and single-scale JSE succeed in better preserving mid-sized
to small neighborhoods, with a bump near the chosen perplexity value (vertical
line in diagrams). Thanks to their specific similarities [9], only SNE and its
variants work well with very HD data (COIL20 and MNIST). Among them, t-
SNE delivers the best results for small neighborhoods, at expense of overlooking
the global structure. Multiscale JSE provides the best tradeoff at all scales, from
local to global, with systematically the highest AUClogK(RNX(K)).
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Fig. 1: The quality curves, AUCs, and some embeddings for the toroidal string.
Each curve reports RNX(K), the relative improvement over a random embed-
ding. The higher the curve, the better; the AUCs stand in the legend. The ver-
tical line indicates the target perplexity for SNE and all its single-scale variants.
Dotted isolines are shown for both QNX(K) (curved) and RNX(K) (straight).

5 Conclusion

Similarity preservation has been a game changer in nonlinear DR. Methods like
SNE, t-SNE, NeRV, and JSE are almost immune to norm concentration and
provide excellent embeddings. However, they all rely on single-scale similari-
ties, that is, soft Gaussian neighborhoods whose single bandwidth is adjusted by
the user, through a perplexity parameter. If DR quality is assessed with K-ary
neighborhood agreement in the HD and LD space, then this design is expected
to favor some scale at the expense of the others. This paper tackles this issue
with multiscale similarities, having several bandwidths that span all neighbor-
hood sizes. Combined with a well chosen cost function, like that of JSE, these
new similarities outperform all single-scale variants of SNE. Moreover, they are
parameter-free and therefore do not require the user to choose a perplexity.
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Fig. 2: The quality curves, AUCs, and some embeddings for the COIL20 subset.
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