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1- Graduate Program in Electrical Engineering -
Federal University of Minas Gerais
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Abstract. This paper proposes a novel regularization approach for
Extreme Learning Machines. Regularization is performed using a priori
spacial information expressed by an affinity matrix. We show that the
use of this type of a priori information is similar to perform Tikhonov
regularization. Furthermore, if a parameter free affinity matrix is used, like
the cosine similarity matrix, regularization is performed without any need
for parameter tunning. Experiments are performed using classification
problems to validate the proposed approach.

1 Introduction

Regularization techniques have been shown to be useful for improving the gener-
alization capability of neural networks [1]. These techniques impose smoothness
constraints to neural network learning, transforming it from an ill-posed prob-
lem to a well-posed one. In order to perform regularization, a priori information
about the problem can be used.

An affinity matrix, or similarity matrix, is a matrix containing measures
of similarities between every pair of observations of a given dataset. These
matrices have already been used in several data analysis problems, including
clustering, dimensionality reduction, image segmentation and link analysis [2].
The structural information represented by an affinity matrix seems to be a good
candidate of a priori information which may be used to perform regularization.

Extreme Learning Machine (ELM) [3] is a learning algorithm for single layer
feedforward networks which can be easily modified to include a regularization
term. Several modifications have already been proposed to include a regulariza-
tion term during the estimation of the output layer weights [4, 5, 6]. However,
up to our knowledge, all existing methods have regularization parameters that
usually are adjusted using some heuristic, like cross-validation or a statistical
information criterion.

This paper proposes a modification on ELM learning algorithm adding a reg-
ularization term computed using a priori information represented by an affinity
matrix. Given the ELM two-step learning process, an affinity matrix is used to
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transform each element of the hidden layer output matrix, inserting information
regarding the spacial organization of the input samples. Next, the transformed
matrix is used to estimate output layer weights. We prove that, if a parameter-
free affinity matrix is used, like the cosine similarity matrix, a regularization
effect is achieved based on a priori structural information without any regular-
ization parameter.

The remainder of this paper is organized as follows. Section 2 presents the
proposed learning algorithm and an analytical demonstration of its regulariza-
tion effect. Next, Section 3 presents the numerical experiment results for su-
pervised and semi-supervised classification problems. Finally, discussions and
conclusions are presented in Section 4 .

2 Regularization in ELMs with Affinity Matrices

Given a set ofN distinct observations (xi,yi), in which xi =[xi1, xi2, · · · , xim]T ∈
Rm and yi ∈ R for i = 1, · · · , N , a single-layer feedforward network (SLFN)
can be used to model these observations as follows:

ŷi =
l∑

j=1

wjg(xi) =
l∑

j=1

wjg(vjxi + bj), i = 1, · · · , N (1)

in which l is the number of hidden layer neurons, g() is an activation function,
vj =[vj1, vj2, · · · , vjm]T is the weight vector connecting the inputs to the j neu-
ron, wj is the weight connecting the j neuron to the output and bj is the j
neuron bias term, for j = 1 · · · l.

In order to a SLFN, composed by l neurons, be able to approximate N
observations with a null error there must exist vj, wj and bj, for j = 1, · · · , l
such that:

HW = Y (2)

with:

H =

⎡
⎢⎣

g(v1x1 + b1) · · · g(vpx1 + bl)
... · · · ...

g(v1xN + b1) · · · g(vpxN + bl)

⎤
⎥⎦
N×l

(3)

W = [w1 · · · wl]
T and Y = [y1 · · · yN ]T

ELM is a SLFN learning algorithm in which vj and bj for j = 1 · · · l
are randomly assigned and the output weights are computed using the Moore-
Penrose pseudo-inverse:

Ŵ = (HTH)−1HTY = H+Y (4)

596

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



The original ELM learning algorithm does not impose any control on the
network response smoothness. Regularization techniques can be used to control
smoothness and consequently improve ELM generalization performance.

In this paper, regularization is performed by modifying the original ELM
algorithm inserting a priori information expressed by an affinity matrix. One
illustrative example of an affinity matrix is the cosine similarity matrix, in which
each element of the resulting N ×N matrix is computed as follows:

pij =
xixj

‖xi‖ ‖xj‖ (5)

The procedure proposed in this paper transforms the hidden layer matrix H
using an affinity matrix P . Each original value of H is transformed in order
to include structural information of the training dataset represented by P . The
resulting H ′ is defined using the following expression:

H ′ = PH (6)

The output layer weights are then computed as follows:

W ′ = (H ′TH ′)−1H ′TY. (7)

Each element h′
ij of H ′ is defined as h′

ij =
∑N

k=1 pikhkj . This expression can

be rewritten as h′
ij = piihij +

∑N
k=1,k �=i pikhkj . Then, H ′ can be decomposed

into:

H ′ = AH +B, (8)

in which

A =

⎡
⎢⎢⎢⎣
p11 0 . . . 0
0 p22 . . . 0
...

...
. . .

...
0 0 . . . pNN

⎤
⎥⎥⎥⎦
N×N

(9)

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
1≤k≤N,

k �=1

p1khk1

∑
1≤k≤N,

k �=1

p1khk2 . . .
∑

1≤k≤N,
k �=1

p1khkl

...
...

. . .
...∑

1≤k≤N,
k �=N

pNkhk1

∑
1≤k≤N,
k �=N

pNkhk2 . . .
∑

1≤k≤N,
k �=N

pNkhkl

⎤
⎥⎥⎥⎥⎥⎥⎦
N×l

(10)

If matrix P is symmetric and normalized, i.e., pij = 1 if i = j, pij = pji and
−1 ≤ pij ≤ 1 for i �= j, A = IN×N and H ′ = H +B. Then, (7) can be rewritten
as follows:
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W ′ = ((H +B)T (H +B))−1H ′TY
= (HTH +HTB +BTH +BTB)−1(PH)TY

= (HTH + Λ)−1HTPTY

= (HTH + Λ)−1HTY ′, (11)

in which Y ′ = PTY = PY and Λ = HTB + BTH + BTB. Since B = H ′ −H
it is easy to show that Λ = H ′TH ′ +HTH .

Analysing (11), one can note that the use of an affinity matrix during ELM
training leads to a Tikhonov regularization effect [7]. The Λ matrix represents
the regularization term and it is computed using only H and P . If a parameter-
free affinity matrix is used, such as the cosine similarity matrix (5), no regular-
ization parameter is necessary.

Furthermore, please note that (11) uses Y ′ = PY instead of Y . That is,
in order to compute the output layer weights, each output observation yi is
transformed from its original value into a weighted sum of all other output
observations, y′i =

∑N
k=1 pikyk, in which the weight associated with a given yk

is defined as the similarity between xi and xk. This modification may improve
ELM generalization for semi-supervised learning problems, since by using Y ′

instead of Y , a priori information expressed by P is used to define output labels
for unlabeled observations. That is, the output for each unlabeled observation
is defined as the weighted sum of all labeled observations outputs.

3 Numerical Experiments

In this section, the proposed modified ELM learning algorithm is evaluated using
supervised and semi-supervised classification problems.

Firstly, experiments are performed to evaluate the regularization effect, and
consequently the generalization improvement, achieved by the inclusion of the
affinity matrix during ELM learning on supervised classification problems.

Next, the proposed algorithm is evaluated using semi-supervised classifica-
tion problems. It is expected that the use of a modified output vector in (11)
and the regularization term would improve the network generalization for semi-
supervised problems.

Four binary classification datasets were considered in all experiments: Aus-
tralian Credit (acr), Statlog (Heart) (hea), Pima Indians Diabetes (pid) and
Wisconsin Breast Cancer (wbc). The datasets were obtained from UCI [8].

All the observations with missing values were removed and the outputs were
normalized to be in {−1, 1}. The inputs were normalized to zero mean and unit
variance and 10-fold cross validation was used to evaluate accuracy. The sigmoid
activation function was used in all experiments and the hidden layer weights were
sampled from a uniform distribution within the interval [−0.5 0.5]. The affinity
matrix used in all experiments was the parameter-free cosine similarity matrix
(5).
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3.1 Supervised Classification

Firstly, the performance of the proposed method is compared with the original
ELM algorithm using supervised learning problems. The comparison is per-
formed to evaluate the regularization effect observed by the inclusion of a priori
information during learning.

Tables 1-4 details test set accuracy (mean ± stdev) for distinct number of
hidden layer neurons (l).

l Met. ELM
10 85.51±4.7 80.87±4.5
30 86.81±4.5 86.67±3.6

100 86.52±4.4 84.93±4.6
1000 86.38±4.1 52.46±5.0

Table 1: Classification results for
the acr dataset

l Met. ELM
10 85.56±7.3 81.11±10.5
30 85.93±6.0 84.44±4.9
100 83.70±6.6 75.93±10.8
1000 83.33±7.3 73.70±5.6

Table 2: Classification results for
the hea dataset

l Met. ELM
10 73.84±5.0 75.39±2.7
30 74.48±4.9 75.92±7.1

100 72.91±3.8 73.57±3.9
1000 74.35±5.5 58.98±6.8

Table 3: Classification results for
the pid dataset

l Met. ELM
10 96.79±2.1 96.78±2.0
30 97.51±2.2 96.05±2.2

100 97.36±1.5 95.90±1.5
1000 97.07±2.8 85.35±4.2

Table 4: Classification results for
the wbc dataset

3.2 Semi-supervised Classification

Finally, the performance of the proposed method is evaluated using semi-supervised
problems. All datasets considered in this work are originally supervised classifi-
cation problems. Thus, in order to evaluate the performance on semi-supervised
problems the datasets were artificially modified by removing the labels of a ran-
domly selected subset of the training observations. For different proportions of
labeled observations nl ∈ {0.01, 0.05, 0.1, 0.5}, (1−nl)% of the observations were
randomly selected and had their outputs set to 0.

Tables 5-8 details test set accuracy (mean ± stdev) for each scenario consid-
ered. The number of hidden neurons l was set to 100 in all experiments.

4 Discussions and Conclusions

The use of affinity matrices during ELM learning allowed not only to improve the
accuracy on supervised learning problems (in most of the evaluated scenarios)
but also prevented overfitting as the number of hidden layer neurons (l) were
increased. This is an interesting result since it suggests that the regularization
approach proposed may achieve good generalization results without the need to
select regularization parameters and/or an optimum number of hidden neurons.

The results obtained for semi-supervised problems suggest that the proposed
method is able to achieve better accuracy using only a small fraction of labeled
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%Labeled Met. ELM
0.01 58.55±7.1 67.97±4.4
0.05 77.54±6.2 75.51±7.8
0.1 83.33±4.5 69.28±5.8
0.5 86.96±3.4 84.20±4.5

Table 5: Classification results -
semi-supervised case (dataset: acr)

%Labeled Met. ELM
0.01 57.04±10.6 42.59±10.4
0.05 66.30±5.1 79.63±9.3
0.1 74.81±7.4 70.00±8.5
0.5 80.37±8.2 70.74±9.0

Table 6: Classification results -
Semi-supervised case (dataset: hea)

%Labeled Met. ELM
0.01 56.64±4.5 55.47±4.7
0.05 71.23±4.3 64.21±8.2
0.1 71.88±3.1 59.26±8.2
0.5 73.44±2.8 71.09±3.4

Table 7: Classification results -
Semi-supervised case (dataset: pid)

%Labeled Met. ELM
0.01 93.27±3.3 96.64±1.5
0.05 91.35±3.8 89.75±4.2
0.1 95.91±2.8 85.81±4.9
0.5 97.21±1.5 94.43±2.3

Table 8: Classification results -
Semi-supervised case (dataset: wbc)

observations. This is also a suggestive result since for several problems it is easy
to gather huge amounts of data however costly to label them.

This paper proposes and validates the use of affinity matrices during ELM
learning as a viable and promising alternative to perform ELM regularization.
An affinity matrix is used to compute a regularization term and expresses a
priori information about the spacial organization of the input observations used
during learning.

Future work shall address the evaluation of different affinity matrices and
comparison with alternative ELM regularization algorithms for supervised and
semi-supervised problems.
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