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Abstract. A novel technique to detect regions of interest in a time
series as deviation from the characteristic behavior is proposed. The de-
terministic form of a signal is obtained using a reliably trained MLP neural
network with detailed complexity management and cross-validation based
generalization assurance. The proposed technique is demonstrated with
simulated and real data.

1 Introduction

Change point detection from a time series is defined as determination of those
time stamps where statistical properties change significantly accordingly to some
predefined criterion. Typical algorithms for this purpose rely on detecting chan-
ges in first or second order statistics, like mean, median, or standard deviation,
or parameters of a statistical model of data distribution [1, 2, 3]. The challenge
for real application, e.g., with industrial measurements [4], is that one needs to
define and estimate the probability distribution which establishes the basis for
change detection [5] (see also [6] for an overview). In this context, a region of
interest (ROI) is considered as a subsequence containing one or more change
points.

Traditionally, neural networks have been utilized with industrial time series
data mainly for classification tasks [7]. MultiLayered Perceptron (MLP) neural
networks are known to be universal nonlinear regression approximators [8]. How-
ever, for real applications this is just the beginning, as summarized by Hornik,
Stinchcombe, and White [9]: ”We have thus established that such ’mapping’
networks are universal approximators. This implies that any lack of success in
applications must arise from inadequate learning, insufficient numbers of hid-
den units or the lack of a deterministic relationship between input and target.”
Therefore, a reliable network training needs to address two other principal char-
acteristics of a data based model in addition to its accuracy: complexity and
generalization to unseen data.

Here we first describe an MLP training algorithm which takes into account
these targets by a detailed management of network’s structural (size of hidden
layer) and functional (size of weights) complexity, targeting at highly reliable
generalization using the well-known cross-validation technique [10]. This train-
ing framework is then applied to the given time series to train MLP capturing
its deterministic behavior. To this end, those subintervals in time where there
are significant deviations greater than predetermined threshold from the model’s
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predictions, are suggested as ROIs. We emphasize that the proposed technique
is unsupervised, i.e., it does not utilize any labeling of ROIs, even if they are
known in advance.

The contents of the rest of the paper are as follows: we describe the proposed
method in Section 2, and report and conclude the computational experiments
in Section 3.

2 The method

2.1 MLP Training

Action of MLP in a layer wise form can be given by (e.g., [11])

o0 = x, ol = F l(Wlõ(l−1)) for l = 1, . . . , L. (1)

By ˜ we indicate the vector enlargement for the bias and F l(·) denotes the
activation function. This places biases in a layer as first column of the layer’s
weight matrix which then have the factorization Wl =

[
Wl

0 Wl
1

]
.

Using the given learning data {xi,yi}
N

i=1 , xi ∈ R
n0 and yi ∈ R

nL , the
unknown weight matrices {Wl}Ll=1 in (1) are determined as a solution of an
optimization problem

min
{Wl}L

l=1

J ({Wl}). (2)

Here we restrict ourselves to MLP with one hidden layer and our cost functional
reads as follows:

J ({W1,W2})=
1

2N

N∑
i=1

∥∥∥W2F̃1(W1x̃i)− yi

∥∥∥2+ β

2n1

∑
(i,j)

(
|W1

i,j |
2+|(W2

1)i,j |
2
)

(3)
for β ≥ 0. The special form of regularization omitting the bias-column W2

0

is due to Corollary 1 in [12]: Every locally optimal solution to (2) provides an

unbiased regression estimate having zero mean error.
The universal approximation property guarantees accuracy of an MLP net-

work, but in practical applications we also need to address simplicity and gen-

eralization. Simplicity is further divided into structural simplicity, which means
favoring small size of the hidden layer, and functional simplicity, which refers to
favoring small weights improving the network’s fault tolerance [13]. Hence, in
our actual training method we use a grid search for both size of the hidden layer
n1 and size of the regularization coefficient β. Moreover, 10-fold cross-validation
is used as a technique to assure proper generalization of the obtained MLP net-
work. To this end, the usual gradient based optimization methods for minimizing
(3) act locally and, therefore, the solution depends on the initialization. In order
to explore the search landscape better towards global optimization, we repeat
the random started optimization solver three times and select, as the solution,
the one with minimal training error. In the final training of MLP with fixed n1

and β, we test five iterations for slightly more thorough globalization.
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Algorithm 1 Reliable determination of MLP neural network.

Input: Training data {xi,yi}
N

i=1 .
Output: MLP neural network.
1: Define ~β, n1max, and nfolds
2: Create nfolds using random sampling
3: for n1 ← 1 to n1max do

4: for regs← 1 to |β| do
5: for k ← 1 to nfolds do

6: for i← 1 to 3 do

7: Initialize (W1,W2) from U([−1, 1])

8: Minimize (3) with current n1 and ~β(regs), and the CVTr

9: Store Network for smallest Perr,Tr

10: Compute Perr,Te for the stored Network
11: Store n∗

1 = n1 and β∗ = β for the smallest mean Perr,Te

12: for i← 1 to 5 do

13: Initialize (W1,W2) from U([−1, 1])
14: Minimize (3) using n∗

1, β
∗ and the whole training data

15: Select the network with smallest Perr

Minimization of (3) is based on MATLAB’s unconstrained minimization rou-
tine fminunc

1 with self realized MLP cost function and gradient calculations
along the lines of [12] (these are done in full matrix form and then reshaped
to and from one long weight vector for the optimizer). The vector of regular-

ization parameters is defined as ~β = 10−i, i = 1, . . . , 6. The prediction error
(Perr,[Tr|Te]) is computed as the mean Euclidian error. In MLP, the sigmoidal

activation function s(x) = 1
1+exp(−x) is used. Moreover, all input and output

variables are preprocessed into the range [0, 1] of s(x) to balance their scaling
with each other and with the range of the overall transformation [12].

2.2 Application of MLP for ROI detection

Assume that a time series {s(ti)}
T
i=1 is given. The learning data for MLP is

created in the usual way: first a window length L ∈ N, L > 1, is fixed and then
we associate yi = s(ti), i = L, . . . , T, and xi = {s(ti−j), j = L− 1, . . . , 1}.

Then Algorithm 1 is applied to train a reliably generalizing network capturing
the deterministic behavior of the time series. With this model, the absolute
prediction error time series

ei = |N ({Wl})(xi)− yi|, i = L, . . . T,

is created. To this end, a threshold τ ∈ R is fixed and those indices, for which
ei > τ, are proposed as members of ROIs.

1http://www.mathworks.se/help/optim/ug/fminunc.html
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3 Experimental results and conclusions

We illustrate the proposed algorithm using two examples, a simulated and a real
data set one. The threshold τ is set to 0.05 and L = 8 is used as the data window
size. We use separate learning data and validation data to assess the method’s
performance to detect ROIs.

Example 1 We created a simulated case with sinusoidal wave form and added

normally distributed degradations of different strength to four subregions. Similar

form with three noncharacteristics subregions is used as validation data. (see

Figure 1)

Example 2 We use the Dodgers data set from UCI repository2. The data de-

scribes a five minute sampled traffic sensor reading storing the amount of cars

passing a ramp on a freeway in Los Angeles. The learning problem is to de-

termine the times of football games which are provided in another file. In the

whole data there is almost six months of measurements (10-Apr-2005 00:00 –

01-Oct-2005 23:55), but occasionally the sensor is off. From the measurements,

we used the indices {380–2466} (11-Apr-2005 07:35 – 18-Apr-2005 13:25, first

five matches) as training data filtering out periods where the sensor is off. As

validation data, the indices {3284-12529} (21-Apr-2005 09:35 – 23-May-2005

12:00, next 18 matches) are used.

Fig. 1: Detected change regions for sinusoidal training data (left) and test data
(right).

In the result figures (Figures 1,2,3), real change points in ROIs are depicted
with red circles and, correspondingly, ROI indices proposed by the thresholded
MLP error are given by green stars. Because Example 2 is related to traffic
near the football stadium, a reasonable assumption is to assume uncharacteristic
traffic patterns also before and after the actual match times. Therefore, we
accept as correct indication of ROI one hour before and after the game.

Because deviation from a normal behavior of a signal can correspond to noise
or actual change, we assume that the time series is not dominated by noise.

2http://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor: ”These loop sensor mea-
surements were obtained from the Freeway Performance Measurement System (PeMS)”
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Therefore, in the Dodgers example we first apply mean filtering with window
size 11 for denoising. The filter size of 11 is selected empirically in order to
achieve smallest window size for removing noise but sustaining real behaviour of
the data.

Fig. 2: MLP training compared to detected ROIs for Dodgers training data.

Fig. 3: MLP testing compared to detected ROIs for Dodgers test data.
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From the figures we conclude that changes from normal deterministic be-
haviour are detected very well with the simulated case, both with training and
validation data (Figure 1). Also, preliminary results are promising with real
data. In the training data, 4 of 5 games were detected (Figure 2). With this
trained network, 14 out of 18 ROIs were successfully located from the validation
data (Figure 3) with 6 false-positive alerts. However, this was the best result ob-
tained after several runs of the overall algorithm, which is not fully deterministic
due to random creation of folds in cross-validation.

Our numerical experiments confirm the potential of the proposed approach.
When the characteristic behavior of a time series is smooth and deviation clearly
visible, as in Example 1, the results are as expected. Even if no such separation
exists, we were able to identify potential and in many cases correct ROIs in
Example 2. As can be seen, however, in such cases it might be difficult to say
whether a noisy behavior (even after denoising) or actual change regions are
captured. Therefore, reliable denoising is a prerequisite for good performance
of the approach. The method could be improved, e.g., by feature extraction to
replace the raw time series values as MLP input.
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