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Abstract. Random Access Memory (RAM) nodes can play the role of artificial 
neurons that are addressed by Boolean inputs and produce Boolean outputs. The 
weightless neural network (WNN) approach has an implicit inspiration in the 
decoding process observed in the dendritic trees of biological neurons. An 
overview on recent advances in weightless neural systems is presented here. 
Theoretical aspects, such as the VC dimension of WNNs, architectural extensions, 
such as the Bleaching mechanism, and novel quantum WNN models, are 
discussed. A set of recent successful applications and cognitive explorations are 
also summarized here. 

1 From n-tuples to artificial consciousness 

It has been 55 years since Bledsoe and Browning [20] introduced the n-tuple 
classifier, a binary digital pattern recognition mechanism. The pioneering work of 
Aleksander on RAM-based artificial neurons [1] carried forward Bledsoe and 
Browning’s work and paved the path of weightless neural networks: from the 
introduction of WiSARD (Wilkes, Stonham and Aleksander Recognition Device) 
[2][3], the first artificial neural network machine to be patented and commercially 
produced, into the 90’s, when new probabilistic models and architectures, such as 
PLNs, GRAMs and GNUs, were introduced and explored [4][5][6][7][8][9]. A natural 
drift into cognitive and conscious architectures followed, due to the work of 
Aleksander and colleagues [10][11][12][13][14][15]. A brief but more detailed 
history of weightless neural systems can be found in [16]. 
 While Braga proposed a geometrical and statistical framework to model the 
state space of pattern distribution in the n-dimensional Boolean space [22], Bradshaw 
introduced the use of statistical learning theory tools in the analysis of the n-tuple 
classifier and related weightless neural models [23]. Interestingly, Bradshaw found 
out that the VC dimension of the n-tuple classifier suggests much poorer 
generalization capabilities than found in practice, which also motivated the production 
of the effective VC dimension for this weightless model [24][25]. The high VC 
dimension of the n-tuple classifier looks underexplored since saturation of RAM 
nodes contents often happens if a relatively small n value is chosen, i.e., when the size 
of the training set is large enough to allow for writing 1’s in most of the RAM nodes 
positions. The introduction of the bleaching mechanism [40][56] was possible via 
extending RAM nodes from one-bit positions to counters able to register the number 
of times a particular RAM position was accessed during the training phase. This 
extension follows early probabilistic weightless models, such as PLNs and GRAMs, 
where RAM positions can also hold values different from 0’s and 1’s that are 
interpreted as firing probabilities. In the next section, bleaching is explained together 
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with how it is related with “mental” images [26][55] produced by the DRASiW model 
[48][81].  
 Section 3 summarizes how quantum computing [66] can be regarded as the 
mathematical quantisation of (classical) Boolean logic computing. Truth values (bits) 
are regarded as an orthonormal basis (cbits) of a two dimensional complex vector 
space where an arbitrary vector is called qubits, multiple bits are tensor products of 
cbits and Boolean operators are realised as unitary matrix. A RAM-based neural 
network, a universal Boolean realiser, is then trivially quantised into a q-RAM-based 
neural network [67][68][69]. Section 4 concludes this paper. 

2  “Mental” images and Bleaching 

DRASiW is an extension to the WiSARD model provided with the ability of 
producing pattern examples, or prototypes, derived from learned categories [26] 
[48][81]. RAM-discriminators are modified in what their memory locations may hold 
and, correspondingly, in their training algorithm. Similarly to PLN nodes, introduced 
by Aleksander [4], such change allows one to store m-bit words in memory locations, 
and such can be exploited in the generation of “mental” images of learned pattern 
categories, i.e., to be able to produce prototypes [56]. 
 It is possible that some of the “mental” images produced by DRASiW are 
contour-saturated images, predominantly composed by dark grey/black pixels. In such 
a scenario, WiSARD’s discriminators generate ambiguous responses, i.e., draws 
between true and false winner responses. This is due to the saturation that (i) is 
quickly reached for a training set with a relevant number of class examples and (ii) 
occurs in an inverted order of the size of RAM neurons: smaller RAM neurons get 
saturated (most RAM positions written) sooner as the number of patterns used in the 
training phase increases. 
 By taking advantage of DRASiW’s prototype generation capability, one can 
avoid ambiguous discriminator responses. Consider the introduction of an integer 
variable threshold b, b ≥ 1, over all RAM neurons contents at all discriminators. At 
the start of a pattern test, b = 1 and, if one observes a draw between discriminator 
responses, b is incremented and the discriminators outputs are re-calculated taking 
into account only RAM neuron contents above b. A straightforward convergence 
policy, called bleaching, is to have b incremented until just one of the discriminators 
producing a winner response. Notice that this process is directly related to the way 
pattern examples are produced from “mental” images in the DRASiW internal retina. 
Furthermore, based on the “mental” image threshold idea to generate a prototype, it 
was shown in [56] that, by re-evaluating the set of RAM-discriminator responses 
upon the detection of a draw, higher rates of correct classification could be obtained. 
 The improvement of WiSARD’s learning mechanism has allowed us to 
successfully implement new applications of weightless system in those domains that 
would not have been tackled without the changes introduced [30][32][35][36][37][40] 
[44]. 
 The most interesting and recent application of the conjunct use of both mental 
images and bleaching is a WiSARD-based approach for non-rigid deformable object 
tracking [54]. The proposed approach allows deploying an on–line training on the 
texture and shape features of the object, to adapt in real–time to changes, and to 

498

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



partially cope with occlusions. In Figure 1 sketches of the WiSARD tracking results 
are reported. 
 

 
Fig. 1: Tracking and “mental” image adaptation during pizza making process 

3 Quantum Weightless Models 

The mathematical quantisation of the Boolean logic is an embedding of the classical 
bits B },1,0{=  the field of integers modulus 2, in a convenient Hilbert space. A 
natural way of doing this is to represent them as an orthonormal basis of a Complex 
Hilbert space. Linear combinations of the basis span the whole space whose elements, 
called states, are said to be in superposition. Any basis can be used but in Quantum 
Computing it is customary to use the canonical one as column vectors: 

T]01[0 = and T]10[1 = . In this context these basis elements are called the 

computational-basis states. A general state of the system, a vector ,][ Tβαϕ =  can 

be written as: ,10 βαϕ +=  where βα,  are complex numbers, called 
probability amplitudes when constrained by the normalisation condition: |α|2 + |β|2 = 
1. This is the model of one qubit. Multiple qubits are obtained via tensor products. A 
common notation for tensor on the basis: ,ijjiji ==⊗ where }.1,0{, ∈ji  The 
values stored in a PLN Node 0, 1 and u are, respectively, represented by the qubits 

 1 ,0 and H ,0  where H  is the Hadarmard matrix defined as H )10(2/10 +=  

and H ).10(2/11 −=
 

The probabilistic output generator of the PLN are 
represented as measurement of the corresponding qubit. There is an obvious 
relationship between outputs of a PLN and that of a q-PLN that associates i to ,i  

where i = 0, 1 and u to H ,0
 

resulting 0 or 1 with probability ½. The random 
properties of the PLN are guaranteed to be implemented by measurement of 
H 0 from the quantum mechanics principles (see e.g. Section 2.2 and Chapter 8 of 
[66] for a lengthier discussion). Another useful unitary matrix is the quantum not: 
X 10 =  and X .01 =  A quantum weightless neural networks is simply 

[67][68]: xAN
nx

xx∑
∈

=
B

α
 
where Bn can be seen as the set n-bits strings, has a very 

interesting interpretation which relates it to a a sort of generalised look up table or 
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RAM memory: the action of N on a basis element x  returns xxA α  which can be 

interpreted as the content of the memory location addressed by x (or x ), where xA  is 

an arbitrary unitary matrix for each x and xα is an m-qubit. In the case of a q-PLN, 

each xA  is one of the unitary matrices I, X or H and .0=xα  Whilst for the q-

MPLN, each xA  is of the form: 1010 ppAp +−=  and 

1101 ppAp −−=  and ,0=xα  where p is real number in the interval [0, 1]. 
This view of WNN is a novelty in [69]. Learning is to change the matrices xA . This 
can be achieved by using controlling qubits (selectors). We refer the reader to 
[77][78][79] for further details on learning.  This model is of sufficient generality as 
of being universal for quantum computation [80] and even more [69]. 

4 Final remarks 

Recent applications based on the WiSARD n-tuple classifier showed competitive 
and/or matched state-of-art, but with training being performed orders of magnitude 
faster. Credit analysis [18], data stream clustering [35][36], indoor positioning [37], 
language POS-tagging [38], target tracking [46][54][64], face recognition [59], and 
recognition of HIV-1 subtypes [82] are among the problems tackled. Most of these 
applications made use of the bleaching [40][56] and other content write-frequency-
based (e.g., [5]) disambiguating mechanisms. 
 The exploration of “mental images” in the WiSARD model in different 
problems such as rule extraction and tracking of shape-shifting targets constitute 
ongoing research work. On the cognitive perspective, where awareness remains as the 
mainstream interest, one should notice that research would be much harder if it 
couldn’t count with the agility of weightless neural systems. On the other hand, 
quantum extensions of the Boolean neuron [67][68] are also a natural and promising 
way to search for a much more powerful [69] neural computational paradigm.   
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