
Learning and modelling big data

Barbara Hammer1, Haibo He2, and Thomas Martinetz3 ∗

1- CITEC centre of excellence, Bielefeld University, Germany

2- CISA Lab, University of Rhode Island, USA
3- Institute for Neuro- and Bioinformatics, University of Luebeck, Germany

Abstract. Caused by powerful sensors, advanced digitalisation tech-

niques, and dramatically increased storage capabilities, big data in the

sense of large or streaming data sets, very high dimensionality, or com-
plex data formats constitute one of the major challenges faced by machine

learning today. In this realm, a couple of typical assumptions of machine

learning can no longer be met, such as e.g. the possibility to deal with all

data in batch mode or data being identically distributed; this causes the
need for novel algorithmic developments and paradigm shifts, or for the

adaptation of existing ones to cope with such situations. The goal of this

tutorial is to give an overview about recent machine learning approaches

for big data, with a focus on principled algorithmic ideas in the field.

1 Introduction

Big data, also referred to as massive data, has been proclaimed as one of the
major challenges of the current decade [63, 72, 75, 103, 120]. Recent investiga-
tions identify the quantity of data which can be handled in the range of exabytes
[61], the article [63] judges the amount of digital data stored worldwide around
13 trillion bytes in 2013. World’s technological capacity to store, communicate,
and compute information is ever increasing, supported by large storage spaces
such as the Utah data centre being built [115, 119]. Research in big data deals
with all aspects how to capture, curate, store, search, share, transfer, analyse,
and visualise such amounts of data. The problem of big data is not new: areas
which traditionally face big data include astronomy, genomics, meteorology, or
physical simulations [16, 45, 69, 133]; besides these areas, new domains emerge
such as social networks, internet search, finance, or telecommunication; big data
carries the promise to substantially enhance decision making e.g. for health care,
employment, economic productivity, crime, security, natural disaster, or resource
management [103]. At the same time, it opens new challenges e.g. concerning
privacy, inter-operability, or general methodology [12, 103, 118]. As an example,
the question occurs how to act against possible discrimination caused by group-
ing or feature relevance determination based on automated big data analytics
[5]. Novel algorithmic challenges such as dynamic multi objective optimisation
occur [13, 25], and a different philosophy how to handle big data such as demand
driven processing only emerges [136].

What exactly is referred to as ‘big’ depends on the situation at hand, and
the term ‘big’ addresses different quantities: the number of data points, but also
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its dimensionality or complexity. Douglas Laney primed the characteristic three
big V’s of big data, nowadays often extended to four V’s [83]:

Volume refers to the size of data sets caused by the number of data points, its
dimensionality, or both. Volume poses particular challenges on the storage
technology and data analysis: access to the data is severely limited, causing
the need for online learning and limited memory methods. For distributed
sources, sampling can be difficult and strong biases or trends can occur.

Velocity refers to the speed of data accumulation including phenomena such
as concept drift, and the need for rapid model adaptation and lifelong
learning. Data are often given as streams only, possibly leading to severe
non-stationarity or heavy tails of the underlying distribution.

Variety refers to heterogeneous data formats, caused by distributed data sources,
highly variable data gathering, different representation technologies, multi-
ple sensors, etc. Machine learning models have to deal with heterogeneous
sources, missing values, and different types of data normalisation.

Veracity refers to the fact that data quality can vary significantly for big data
sources, and manual curation is usually impossible. Distributed sampling
can lead to strong sampling biases or adversarial actions. The problem
occurs how to judge this quality and how to deal with quality differences.

From a mathematical perspective, these challenges are mirrored by the follow-
ing technological issues as detailed in [103]: Dealing with highly distributed data
sources; Tracking data provenance, from data generation through data prepara-
tion; Validating data; Coping with sampling biases and heterogeneity; Working
with different data formats and structures; Developing algorithms that exploit
parallel and distributed architectures; Ensuring data integrity; Ensuring data
security; Enabling data discovery and integration; Enabling data sharing; Devel-
oping methods for visualising massive data; Developing scalable and incremental
algorithms; Coping with the need for real-time analysis and decision-making.

In the context of big data, the term ‘machine learning’ occurs in two roles:
(i) Machine learning as enabling technology: Machine learning constitutes a
major technology to deal with big data. Due to the sheer size of the data,
traditional modelling or manual inspection become impossible. Machine learning
methods together with their strong mathematical background offer promising
possibilities to extract provably accurate information from such data. Hence
big data provides conditions such that the use of machine learning techniques
instead of more traditional modelling becomes advisable [34]. (ii) The need
to adapt machine learning techniques for big data: On the other hand, big data
forces machine learning research to step out of the classical setting of comparably
narrow learning tasks and i.i.d. data which are available prior to training. Out
of ten of the most popular machine learning techniques according to the article
[135] only few are actually readily applicable for big data; machine learning
research has to face the challenges imposed by big data analysis.

Interestingly, it is not clear whether big data actually facilitates or hinders
current machine learning techniques: according to classical learning theory, large
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data sets avoid the risk of overfitting; the need of a good model parameterisation
or suitable priors is weakened due to the sheer size of the data. Universal learning
models such as Gaussian Processes become independent of the model prior in the
limit of large training sets in traditional settings. In big data analytics, however,
fundamental statistical assumptions (such as data being i.id.) are not necessarily
met. Hence a thorough model validation is necessary and simple models for big
data explanation might even need more carefully designed priors [31].

Albeit machine learning and big data are closely interwoven, it seems that
entirely novel algorithmic developments to face the challenges of big data are
rare in machine learning research in the last years. An internet search for the
keywords ‘machine learning’ and ‘big data’ does not point to novel scientific
developments in the field in the first places. Instead, companies offering data
analysis services and funding initiatives connected to big data are listed. While
this fact emphasises the great economic and social relevance of the field, it causes
the impression that principled technological developments of big data analytics
are often limited to an adaptation of existing methods, and a widely accepted
canon of big data machine learning approaches is still lacking. One exception is a
notable increase of parallel machine learning implementations mostly on the base
of MapReduce [125]. In the following, we will provide an overview about recent
algorithmic developments which seem promising in the field, without claiming
any completeness as concerns relevant research in this rather heterogeneous field.

2 Data representation

Machine learning is coping with the challenge how to represent big data in a way
suited for its efficient use for typical machine learning problems. Two different
settings have to be addressed: What to do if a huge number of data points is
given? What to do if data are very high dimensional?

The first problem, how to deal with a large number of data points efficiently,
is often tackled within the algorithmic setting itself. Possible approaches include
sampling methods or efficient data representation strategies for matrix data. We
will discuss this issue in more detail in section 3. One problem which is indepen-
dent of the algorithmic setting concerns optimal data compression for storage.
Interesting adaptive machine learning techniques have recently been proposed
[110]. Further, alternative data descriptions which represent the topological form
of the data rather than storing single data points have been investigated [19].

The second problem is how to represent extremely high dimensional data.
High dimensionality is often caused by modern sensor technology such as a high
spectral resolution or modern fMRI techniques. In the first place, detailed data
descriptions caused by a large number of sensors or a detailled sensor resolution
carry the promise of a fine grained and highly informative data representation. It
is expected that some insights crucially depend on a high level of detail [44, 46].
On the down side, severe problems arise for typical machine learning algorithms
from such high dimensional data descriptions: the curse of dimensionality and
possible meaninglessness of formalisations for high dimensional data occur [70].

Feature selection constitutes one classical technique to deal with high di-
mensional data. Quite a few approaches extend feature selection methods to
the context of very high data dimensionality, e.g. investigating applications for
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microarray data or text data [40, 66], addressing their suitability for highly im-
balanced data sets [145], or proposing novel feature selection techniques based
on geometric principles or stratified sampling [93, 142]. Another relevant as-
pect concerns the construction of features for high dimensional data such as e.g.
random Fourier features [139]. By relying on a suitable regulariser, e.g. the L1

norm, feature selection can also be incorporated in the machine learning tech-
niques as proposed in the frame of the support feature machine, for example [78].
In a similar way, techniques such as subspace clustering combine the objective
of dimensionality reduction with a machine learning objective [132].

One advantage of feature selection is given by their direct interpretability;
more general transformations of the data to low dimensions might be more suit-
able to capture the relevant information for the given task at hand at the price
of a possibly reduced interpretability of the representation. Popular classical lin-
ear techniques such as independent or principal component analysis have been
extended to the setting of high dimensional data [48], or distributed settings
[71]. Similarly, efficient extensions of canonical correlation analysis for high di-
mensional data exist [27]. Based on the observation proved by Johnson and Lin-
denstrauss [68] that also random projections preserve important information,
in particular proximity of data, random projections provide another method
of choice to reduce high data dimensionality due to their low computational
complexity and often excellent performance. Interestingly, it is possible to ac-
company the experimental findings by strong theory in which cases random
projections can help [37]. The preservation of similarities also constitutes the
primary objective of a procrustean approach for dimensionality reduction [52].
Besides linear projections, nonlinear dimensionality reduction techniques enjoy a
wide popularity for direct data visualisation or low-dimensional data preprocess-
ing, provided the dimensionality reduction method is equipped with an explicit
mapping prescription, see e.g. the recent overview [49, 127]. One particularly
prominent dimensionality reduction technique which has been extended to big
data sets is offered by deep learning approaches. Deep learning mimics a bio-
logically inspired hierarchical encoding and decoding of information by means of
suitable nonlinear maps. Successful applications range from speech recognition
to image processing for big data sets [30, 80, 113, 146].

A very promising alternative to feature transformation and dimensionality
reduction is offered by sparse coding techniques which take a generative point of
view for efficient data representation. Data are approximated by linear combi-
nations of suitable base functions with sparse coding coefficients. For many high
dimensional real life data sets e.g. stemming from vision, efficient sparse coding
schemes can be found by modern online training schemes such as proposed in
[62, 82]. These ideas can also successfully be integrated into particularly efficient
sensing of signals in the frame of compressive sampling [35, 67].

Data are not always vectorial in nature, rather a representation by pairwise
similarities or dissimilarities becomes increasingly common since such a represen-
tation can better be adapted to dedicated data structures, see [106]. The number
of data constitutes a strong bottleneck for a matrix representation collecting the
pairwise similarities due to its quadratic growth. Hence approximation meth-
ods have been proposed to cope with this issue. Low rank approximation such
as provided by the Nyström method offer particularly efficient representations
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which can often be integrated into learning algorithms as linear time technique,
see e.g. [50, 51, 152]. Other popular techniques to efficiently deal with large size
matrices include random representations, representations by learned functions,
or a more general low-rank column-row decomposition of the matrix [11, 92, 65].

In principle, slim representations of high dimensional data aim at a regular-
isation to get rid of random effects caused by the high dimensionality. Instead
of regularising the data representation, promising approaches regularise the ma-
chine learning results taking into account the learning context: transfer learning,
as an example, can make use of priorly gathered models and puts a strong bias
on the new setting, besides the effect of allowing very efficient, possibly even
one-shot learning for novel tasks [33, 109, 131].

3 Learning algorithms

Algorithms which are effective for big data sets are severely restricted as con-
cerns their computational complexity and memory use. Different settings can be
relevant: on the data side we can face streaming data which arrives over time,
distributed data which cannot be put on a single machine, or very large data
which fits on a disk but not in the main memory; on the machine side, typical
settings range from single machines, multicores, up to parallel clusters. If single
machines are used, big data have to be handled de facto as streaming data due
to memory restrictions. In this realm, a necessary prerequisite for suitable algo-
rithms is their at most linear run time, their restriction to at most a single pass
over the data, and their only constant memory consumption.

This observation has caused a boost of online, streaming, or incremental
algorithms for various popular machine learning techniques such as SOM, PCA,
inference, variational Bayes, information fusion, learning of mixture models, or
kernel density estimation [15, 17, 28, 38, 55, 76, 77, 87, 102]. Online learning
and learning from data streams is mathematically well investigated and explicit
learning theoretical guarantees can be derived under certain conditions [6, 20, 21,
56, 141]. In practice, the problem of imbalanced data, concept drift and outliers
remains a challenge [23, 57, 42, 43, 143]. Online learning can often directly
be derived from machine learning cost functions via gradient techniques. Since
suitable regularisers such as sparsity constraints are often not smooth, variations
such as proximal maps have to be used [147]. In the presence of concept drift,
gradient techniques face the problem of varying stability and plasticity of data.
Due to this fact many techniques incorporate sufficient statistics of relevant
model parameters such as data centroids [26, 50, 104, 105].

Online and streaming algorithms do not permit an adaptation of model com-
plexity based on classical cross-validation technology, such that a further focus
of research deals with self tuning models for big data. Promising approaches ad-
dress clustering schemes and factor models with adaptive model complexity as
well as intelligent kernel adaptation strategies [96, 149, 148]. Apart from incre-
mental techniques, scalability for big data can be reached to some extend based
on hierarchical schemes. Recent proposals in this context address clustering and
data visualisation techniques [3, 39, 41].

Another popular way to reduce the complexity of training addresses sub-
sampling of the data, hence substituting the (infeasible) big data set by a rep-
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resentative subsample only. Essentially, Nyström techniques as mentioned in
section 2 can be linked to sampling landmarks which are used to represent the
full data [81]. Classical methods such as Markov chain Monte Carlo or stochas-
tic variational inference demonstrate the enormous power of suitable sampling
approaches [108, 144]. However, the main problem of sampling in the presence
of big data consists in the fact that it is not easy to obtain representative sam-
ples from distributed sources. Approaches to overcome this problem rely on
techniques such as snowball sampling or combinations of sampling with suit-
able transformation techniques, resulting in promising methods e.g. for outlier
detection or low dimensional data representation [32, 60, 91, 116].

Another crucial challenge which algorithms have to face is the heterogeneous
quality of big data and missing information. For example, one very prominent
setting encountered in big data is the fact that usually only a small part of the
data is labeled, since labelling often requires substantial human effort. In conse-
quence, many algorithms for big data address unsupervised learning scenarios,
semi-supervised models, self-training or one-class classification approaches, or
active learning [54, 64, 89, 123, 129, 130, 134]. One very interesting strategy to
increase explicit labelling consists in crowd sourcing, such as proposed in [8, 22].
Naturally, such methods raise the challenge how to assure data quality [88].

4 Efficient approximation schemes

Efficient data representation and machine learning models constitute instances
of approximation schemes. In this section, we address yet another type of ap-
proximation which can be put under the umbrella of algorithmic approximations
based on intelligent data structures and algorithm design. Interestingly, the al-
gorithmic complexity of problems can actually become simpler for big data sets
such as recently investigated in the context of learning half spaces [29].

What are algorithmic ways which can boost learning for big data? Often,
structural observations allow to cast the given optimisation problem into a sim-
pler form. Some approaches rely on symmetries which allow an efficient lift of
algorithms such as demonstrated for belief propagation in [2]. Other techniques
explore the connection of machine learning tasks to different mathematical for-
mulations such as cross-relations of clustering and non-negative matrix factori-
sation [140], or the connection of the Rayleigh-Ritz framework to eigenvalue
problems in linear discriminant analysis [151]. Further, several relevant prob-
lems allow an efficient approximation such as e.g. dynamic programming meth-
ods using kernel techniques [55, 58, 137], or summation for some specific kernels
[94]. Some approximation methods can be accompanied by explicit bounds. One
prominent example are geometric methods for representing data in sparse form
relying on so-called core sets [1, 5]. By using the QP formalisation of these geo-
metric problems, an equivalence to popular machine learning problems such as
large margin kernel classification and regression can be established, resulting in
linear time SVM techniques with a constant number of support vectors [122].

Another important aspect is how to approximate possibly complex models
by sparse alternatives, to guarantee fast model evaluation as well as efficient
incremental training based on these approximations. Recent approaches propose
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different ways to prune the model complexity such as the number of prototypes
to represent data or the number of support vectors of an SVM [86, 101, 150].

Many efficient algorithms for big data sets rely on advanced data structures
which enable a particularly efficient computation of basic algorithmic ingredi-
ents. Popular data structures in this realm range from suffix trees for efficient
string comparison, to KD-trees, cover trees, and variants for the efficient group-
ing of geometric data, up to hashing for efficient nearest neighbour search [4].
As an example application, one can consider methods which rely on pairwise
proximities such as modern nonlinear data visualisation. Their naive implemen-
tation scales quadratically with the number of points. A considerable speedup
can be obtained based on intelligent data structures such as KD-trees and a
popular approximation method borrowed from particle systems, the Barnes hut
approach, resulting in O(n logn) visualisation techniques [126].

5 Parallel implementations

Big data is closely interwoven with an increasing availability of parallel and dis-
tributed algorithmic realisations and cloud computing. The existing proposals
can roughly be distinguished into two main streams: parallel implementations
of specific algorithms, mostly relying on the MapReduce framework, or general
purpose software libraries which try to bridge the gap between the basic MapRe-
duce framework and the needs of typical machine learning algorithms. Within
the latter realm, one can find algorithms platforms for streaming data [10], soft-
ware libraries for efficient supervised learning [117], or powerful models which
allow an easy parallel realisation of typical machine learning inference tasks con-
nected to graphs [90]. Further general approaches for parallel big data analytics
include a cloud implementation of data analytics for dynamic data [112], or a
MapReduce realisation of popular data mining methods for shared data [24].

More specific parallel implementations address various machine learning mod-
els such as robust regression [97], support vector machines [100], extreme learning
machines [59, 128], power iteration clustering [138], vector quantisation [53], k-
means [7], as well as popular techniques required for machine learning problems
such as distributed optimisation [36], online mini batch gradient descent [111],
or eigenvalue solvers [73]. Besides, machine learning has also been investigated
in its suitability to optimise parallelisation as regards its efficiency [95]. Further,
first approaches address issues beyond the mere implementation such as how to
incorporate the reliability of hardware components [18].

6 Applications

The developments as detailed above set the ground for an efficient use of machine
learning in the context of big data. Their suitability is mirrored by widespread
applications in big data analytics in the last years: recent successful approaches
range from traditional areas such as astronomy [14, 107, 114], physical simula-
tions [99], traffic analysis [9, 85], or intrusion detection [84, 98], up to social net-
work analysis [47, 74, 79], automated speech and literature processing [102, 121],
or the analysis of data from computational neuroscience [124].

349

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



References
[1] P. K. Agarwal, S. Har-Peled, Kasturi, R. Varadarajan. Geometric approximation via coresets. In Combinatorial

and Computational Geometry, MSRI, 1–30. Univ. Press, 2005.

[2] B. Ahmadi, K. C. Kersting, M. Mladenov, and S. Natarajan. Exploiting symmetries for scaling loopy belief
propagation and relational training. Machine Learning, 92(1):91–132, 2013.

[3] C. Alzate and J. A. K. Suykens. Hierarchical kernel spectral clustering. Neural Networks, 35:21–30, 2012.

[4] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions.
Commun. ACM, 51(1):117–122, Jan. 2008.

[5] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. Distributed strategies for mining outliers in large data sets.
IEEE TKDE, 25(7):1520–1532, 2013.

[6] P. Auer. Online learning. In C. Sammut and G. I. Webb, eds, Encycl. Machine Learning, 736–743. Springer, 2010.

[7] M.-F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on general communica-
tion topologies. In NIPS 26, 1995–2003. 2013.

[8] L. Barrington, D. Turnbull, and G. Lanckriet. Game-powered machine learning. Proc. Nat. Acad. Sciences USA,
109(17):6411–6416, 2012.
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[114] P. Škoda. Astroinformatics: Getting new knowledge from the astronomical data avalanche. Advances in Intelligent
Systems and Computing, 210:15, 2013.

[115] F. Steve. Utah’s $1.5 billion cyber-security center under way. Deseret News, Jan 2011.

[116] M. Sugiyama and K. Borgwardt. Rapid distance-based outlier detection via sampling. NIPS 26, 467–475. 2013.

[117] A. Tacchetti, P. Mallapragada, L. Rosasco, and M. Santoro. Gurls: A least squares library for supervised
learning. JMLR, 14:3201–3205, 2013.

[118] C.-H. Tai, P. Yu, D.-N. Yang, and M.-S. e. Chen. Structural diversity for resisting community identification
in published social networks. IEEE TKDE, 26(1):235–252, 2014.

[119] H. Takahashi and Y. Jimbo. Trends in neural engineering. IEEJ Transactions on Electronics, Information and Systems,
133(3):544–549, 2013.

[120] T. Tanaka. Big data application technology: An overview. IEEJ Transactions on Electronics, Information and
Systems, 133(3):550–553, 2013.

[121] A. Thessen, H. Cui, and D. Mozzherin. Applications of natural language processing in biodiversity science.
Advances in Bioinformatics, 2012, 2012.

[122] I. W. Tsang, J. T. Kwok, P. ming Cheung, and N. Cristianini. Core vector machines: Fast svm training on
very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

[123] M. Turchi, T. De Bie, and N. Cristianini. An intelligent web agent that autonomously learns how to translate.
Web Intelligence and Agent Systems, 10(2):165–178, 2012.

[124] N. Turk-Browne. Functional interactions as big data in the human brain. Science, 342(6158):580–584, 2013.

[125] J. Dean, S. Ghemawat. MapReduce: Simplified data processing on large clusters. Google Labs, Dec 2004.

[126] L. van der Maaten. Barnes-hut-SNE, CoRR, abs/1301.3342, 2013.

[127] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality reduction: A comparative review, 2008.

[128] M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse. GPU-accelerated and parallelized elm ensembles for
large-scale regression. Neurocomputing, 74(16):2430–2437, 2011.

[129] H. Vu, S. Liu, X. Yang, Z. Li, Y. Ren. Identifying microphone from noisy recordings by using representative
instance one class-classification approach. Journ.Networks, 7(6):908–917, 2012.

[130] R. Wang, S. Kwong, and D. Chen. Inconsistency-based active learning for support vector machines. Pattern
Recognition, 45(10):3751–3767, 2012.

[131] X. Wang, M. Wang, and W. Li. Scene-specific pedestrian detection for static video surveillance. IEEE TPAMI,
36(2):361–374, 2014.

[132] Y.-X. Wang, H. Xu, and C. Leng. Provable subspace clustering: When LRR meets SSC. NIPS 26, 64–72. 2013.

[133] P. Webster. Supercomputing the climate: Nasa’s big data mission. CSC World, 2012.

[134] S. Wu and S. Wang. Information-theoretic outlier detection for large-scale categorical data. IEEE TKDE,
25(3):589–602, 2013.

[135] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1–37, Dec. 2007.

[136] X. B. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data mining with big data. IEEE TKDE, 26(1):97–107, 2014.

[137] X. Xu, C. Lian, L. Zuo, H. He. Kernel-based approximate dynamic programming for real-time online learning
control: An experimental study. IEEE Trans.Contr.Sys.Techn., 22(1):146–156, 2014.

[138] W. Yan, U. Brahmakshatriya, Y. Xue, M. Gilder, and B. Wise. P-PIC: Parallel power iteration clustering for
big data. Journal of Parallel and Distributed Computing, 73(3):352–359, 2013.

[139] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random fourier features: A
theoretical and empirical comparison. NIPS 25, 485–493. 2012.

[140] Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja. Clustering by nonnegative matrix factorization using
graph random walk. NIPS 26, 1088–1096, 2012.

[141] Z. Yang, H. Zhang, and E. Oja. Online projective nonnegative matrix factorization for large datasets. ICONIP
(3), 285–290. Springer, 2012.

[142] Y. Ye, Q. Wu, J. Zhexue Huang, M. Ng, X. Li. Stratified sampling for feature subspace selection in random
forests for high dimensional data. Pattern Rec., 46(3):769–787, 2013.

[143] Y.-R. Yeh and Y.-C. Wang. A rank-one update method for least squares linear discriminant analysis with
concept drift. Pattern Recognition, 46(5):1267–1276, 2013.

[144] J. Yin, Q. Ho, and E. Xing. A scalable approach to probabilistic latent space inference of large-scale networks.
NIPS 26, 422–430. 2013.

[145] L. Yin, Y. Ge, K. Xiao, X. Wang, and X. Quan. Feature selection for high-dimensional imbalanced data.
Neurocomputing, 105:3–11, 2013.

[146] K. Yu, L. Jia, Y. Chen, and W. Xu. Deep learning: yesterday, today, and tomorrow. Jisuanji Yanjiu yu
Fazhan/Computer Research and Development, 50(9):1799–1804, 2013.

[147] Y.-L. Yu. On decomposing the proximal map. NIPS 26, 91–99. 2013.

[148] J. Zhao and L. Shi. Automated learning of factor analysis with complete and incomplete data. Computational
Statistics and Data Analysis, 72:205–218, 2014.

[149] S. b. Zhong, D. Chen, Q. Xu, and T. Chen. Optimizing the Gaussian kernel function with the formulated
kernel target alignment criterion for two-class pattern classification. Pattern Recognition, 46(7):2045–2054, 2013.

[150] F. Zhu, N. Ye, W. Yu, S. Xu, and G. Li. Boundary detection and sample reduction for one-class support vector
machines. Neurocomputing, 123:166–173, 2014.

[151] L. Zhu and D.-S. Huang. A Rayleigh-Ritz style method for large-scale discriminant analysis. Pattern Recognition,
47(4):1698–1708, 2014.

[152] X. Zhu, A. Gisbrecht, F.-M. Schleif, and B. Hammer. Approximation techniques for clustering dissimilarity
data. Neurocomputing, 90:72–84, 2012.

352

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.




