
Probabilistic automata simulation with single
layer weightless neural networks

Adenilton J. da Silva1 and Wilson R. de Oliveira2 and Teresa B. Ludermir1 ∗

1- Universidade Federal de Pernambuco - Centro de Informática
Cidade Universitária - 50740-560 - Recife/PE - Brazil

2- Universidade Federal Rural de Pernambuco
Departamento de Estat́ıstica e Informática

Dois Irmãos - CEP: 52171-900 - Recife/PE - Brazil

Abstract. Computability of weightless neural networks is the major
topic of this paper. In previous works it has been shown that, one can
simulate a Turing machine with a weightless neural network (WNN) with
an infinite tape. And it has also been shown that one can simulate prob-
abilistic automata with a WNN with two queues. In this paper, we will
show that is possible to simulate a probabilistic automata with a single
layer WNN with no auxiliary data structures.

1 Introduction

Weightless neural networks [1, 2] (WNN) were proposed by Igor Aleksander in
the late sixties [3]. WNNs are a simple and powerful model which has been
used in several applications [4, 5, 6]. In this paper, we study the computational
capabilities of recurrent WNNs.

The computational capabilities of WNNs have been studied previously in
several occasions [7, 8, 9, 10]. In [7] and [9] the authors showed an equivalence
between weightless neural networks and probabilistic automata. Probabilistic
automata are more powerful [11] than finite state automata [12] and can recog-
nize all regular languages, some context-free, some context-sensitive and some
recursive enumerable languages, cutting the Chomsky Hierarchy [12] elliptically.

The advantage of [9] over [7] is that the neural network in [9] has a well-
defined architecture. On the other hand, in [9] two queues are used as auxiliary
data structure whilst in [7] neurons have an additional parameter storing a prob-
ability and the network does not use an auxiliary data structure. In this paper,
it will be presented an algorithm to convert a probabilistic automaton into a
WNN. The WNN used has a single layer (as in [9]) and it does not need an
auxiliary data structure (as in [7]).

The remainder of this paper is divided in 3 sections. Section 2 presents the
concepts of probabilistic automata and weightless neural networks. Section 3
presents the main results of this work: the definition of the pGSN Weightless
Neural Networks and the algorithm to convert probabilistic automata in WNNs.
Finally, Section 4 is the conclusion.

∗This work is funding by research grants from CNPq (Edital Universal) and FACEPE-
PRONEX.

547

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

2 Preliminary concepts

2.1 Weightless neural networks

A RAM neuron with n binary inputs consists of 2n one bit addressed memory
positions C. When an input x is presented to a RAM neuron, its output will be
the memory content C[x] addressed by x. The learning procedure in the RAM
neuron consist in to changing values stored in the memory C.

A PLN neuron is a generalization of the RAM neuron. In PLN is possible to
store a two-bit number in each memory position. Values stored in PLN memory
can be 0, 1 and u. If a neuron has input x then the output of the neuron will
be 0 if C[x] = 0, 1 if C[1] = 1, and 0 or 1 with same probability if C[x] = u.

The PLN neuron can be further generalised allowing one to store a real
number in its memory positions, such neuron is known as the pRAM neuron [13].
The output of a pRAM neuron with input x is probabilistic, and will be 1 with
probability p or 0 with probability 1− p if C[x] = p. The PLN neuron can also
be modified to produce outputs and receives inputs in the set {0, 1, u}, and in
this case is called Goal Seeking Neuron (GSN) [14].

2.2 Probabilistic automata

Probabilistic automata [11] generalize the concept of deterministic finite au-
tomata. In the probabilistic automata the transition function determines the
probabilities pij(a) of going with input a from state qi to state qj . Definition 1
formalises the concept of probabilistic automata [9].

Definition 1 A probabilistic automata PA is a 5-tuple Ap = (Σ, Q,H, qI , F)
where:

• Σ = {σ1, · · ·σ|Σ|} is a finite set of symbols called the input alphabet;

• Q = {q0, q1, · · · , q|Q|} is a finite set of states;

• H = {Ha}a∈Σ is a set of stochastic n× n state transition matrices (where
n = |Q| is the number of states in Q). The (i, j)-entry of Ha, is Ha [i, j] =
pij (a), where pij(a) is the probability of entering state qj from state qi
under input a.

• qI ∈ Q is the initial state in which the machine is found before the first
symbol of the input string is processed;

• F ⊂ Q is the set of final states.

Diagram of a probabilistic automaton Ap is displayed in Figure 1. With
input w = 110, Ap follows the state sequence ({q0}, {q1}, {q1(50%), q2(50%)},
{q4(25%), q3(50%)}). The language of a probabilistic automata is the set of
strings that leads the automata to a final state q with probability greater than
a given threshold λ. Languages recognized by probabilistic automata include
all regular languages, some context-free, some context-sensitive and some recur-
sively enumerable languages [11].

548

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

q0start q1 q3

q2

q4

1 (100%)

1
(50%

)

0 (50%)

0
(5
0%
)

1 (50%)

1 (100%)

0
(1
00

%
)

1 (50%)

1
(5
0
%
)

1 (100%)

1
Fig. 1: State diagram of a probabilistic automata Ap.

3 Probabilistic automata simulation by WNN

The neuron used in this section is an evolution of the GSN neuron that can be
considered as a contribution of the present work: a novel GSN neuron. Recall
that GSN neuron can receives inputs 0, 1 or u (undefined). With input u the
neuron will enter in more than one memory position. For instance, if a neuron
with two inputs receives the signal u0, the neuron will access memory positions
00 and 10. Here we generalize the GSN neuron inspired with concepts from
quantum computation.

A quantum bit can be in a linear combination of 0 and 1 with a given prob-
ability. We use this idea to define a probabilistic GSN (pGSN) neuron that
receives real inputs. For instance, let x and y be real numbers, with input (x, y),
a two input neuron will access all its memory positions and its output will be the
linear combination (1−x)(1−y)·C[00]+(1−x)y·C[01]+x(1−y)·C[10]+xy·C[11].
Each memory content C of the GSN with n inputs stores a n-dimensional vector
of real numbers.

Now we simulate a probabilistic automata with a WNN composed of pGSN
neurons. Similar result was previously obtained in [7, 9] but with others weight-
less neural models. Here we perform the simulation without auxiliary data struc-
tures and with a single layer neural network composed of pGSN neurons, which
we call SpGSN.

For lack of space we only present the Algorithm 1, without a proof of correct-
ness, using the pGSN neuron to simulate a given probabilistic automata. If an
automaton has n states, we will impose an order on these states and represent
the i-th state by a vector of n bits where the i-th bit is set to 1 and all the

549

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 1: From probabilistic automata to WNN

1 Arbitrarily order the states.
2 Represent the ith state qi by a vector with ns memory positions where

the ith memory position is set to 1 and the others bits are set to 0.
3 Arbitrarily order the the elements of Σ
4 Represent the jth input symbol aj by a vector with ni memory positions

where the jth memory position is set to 1 and the others positions are set
to 0.

5 Create |Σ| single layer WNN with |Q| neurons, where each neuron i in
network j receives as input the ith memory position of state
representation and the jth memory position of next input representation.

6 foreach Neuron i in Network j do
7 foreach xy ∈ {0, 1}2 do
8 if x ∧ y = 1 then
9 foreach state k do

10 Set k-th coordinate of memory position xy of neuron i in
network j to the probability that δ(qi, aj) = ak

11 end
12 else
13 Set memory position xy of neuron i in network j to 0|Q|

14 end

15 end

16 end

17 end

others are set to 0. This representation is knowed as 1-of-n. We follow the same
strategy to represent the elements of Σ. These operations are represented in
Steps 1 to 4 of Algorithm 1.

Let ns be the number of states and ni the number of possible inputs. Step 5 of
Algorithm 1 creates ni networks, with ns neurons by network. All neurons in the
networks has 2 inputs and 4 memory positions, and each memory position stores
ns bits. The total number of memory positions used in the WNN representation
is 4 · ni · n2

s = O(ni · n2
s).

Neurons memories are initialized in the loop starting at Step 6. The k-th
coordinate of memory position C[11] of neuron i in network j is set to the
probability of going to state qk from the state qi with input aj . The others
memory positions are set to the binary string 0ns .

Figure 1 is the state diagrama of a probabilistic automata. The WNN rep-
resentation of this probabilistic automata following Algorithm 1 is presented in
Figure 2.

The network constructed by Algorithm 1 process strings as follows. Registers
q0, · · · , qns

are initialized with the vector representation of the initial state q0.
Vector representation of the next input is fed to the network, and the network is

550

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

q0 q1 q2 q3 q4 x0 x1

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 1)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0.5, 0.5)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 1, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0.5, 0.5, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 1, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 1, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0.5, 0.5)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

Σ

1Fig. 2: State diagram of a probabilistic automata Ap.

allowed to produce its output. In the next execution, the network output is fed to
the registers q0, · · · , qns

and the vector representation of the next input symbol
is fed to the registers x1, · · · , xni

. When all the input symbols are read, the
network stops and accepts if qj is a final state and the jth coordinate of the state
vector is greater than a threshold λ. One can easily verify with an induction
over the input string size that the proposed WNN simulates the probabilistic
automata.

4 Conclusion

The computability of WNN networks have been study in several others occasions
in the literature [10, 9, 7]. Equivalence between probabilistic automata and
WNN is shown in [9, 7]. In these papers it is used an auxiliary data structure
or the network has unconventional architecture. Here we show a construction
to simulate probabilistic automata with WNN without auxiliary data structures
and with a single layer neural network. We proposed a new weightless neuron
used in this construction. It is an evolution of the GSN neuron, by allowing real

551

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

number as inputs and vectors as output.
The SpGSN network can be trained with learning algorithms previously pro-

posed in the weightless literature. One possible future work is to verify if one
can train a SpGSN with a learning algorithm that uses continuous optimization
such as gradient descent or backpropagation. Another possible future work is
to extend the studies in this paper to verify if it is possible to simulate Turing
machines with recurrent SpGSN networks, which we conjecture to be true.

References

[1] T. B. Ludermir, A. Carvalho, A. P. Braga, and M. C. P. Souto. Weightless neural models:
A review of current and past works. Neural Computing Surveys, 2:41–61, 1999.

[2] I. Aleksander, M. de Gregorio, F.M.G. França, P.M.V. Lima, and H. Morton. A brief
introduction to weightless neural systems. In Proceedings of the 17th European Symposium
on Artificial Neural Networks (ESANN 2009), page 299–305, 2009.

[3] I. Aleksander. Self-adaptive universal logic circuits. Electronics Letters, 2(8):321–322,
1966.

[4] S. Yong, W. Lai, and G. Goghill. Weightless neural networks for typing biometrics au-
thentication. In M. Negoita, R. J. Howlett, and L. C. Jain, editors, Knowledge-Based
Intelligent Information and Engineering Systems, volume 3214 of Lecture Notes in Com-
puter Science, pages 284–293. Springer Berlin Heidelberg, 2004.

[5] D. O. Cardoso, P. M. V. Lima, M. de Gregorio, J. Gama, and F. M.G. França. Clustering
data streams with weightless neural networks. In ESANN, 2011.

[6] B. Grieco, P. Lima, M. de Gregorio, and F. M. G. França. Producing pattern examples
from “mental” images. Neurocomputing, 73(7):1057–1064, 2010.

[7] T.B. Ludermir. Computability of logical neural networks. Journal of Intelligent Systems,
2(1):261–290, 1992.

[8] M. C. P. de Souto, J. C. M. Oliveira, and T. B. Ludermir. A tool to implement proba-
bilistic automata in ram-based neural networks. In Neural Networks (IJCNN), The 2011
International Joint Conference on, pages 1054–1060. IEEE, 2011.

[9] M. C. P. de Souto, T.B. Ludermir, and W.R. de Oliveira. Equivalence between ram-based
neural networks and probabilistic automata. Neural Networks, IEEE Transactions on,
16(4):996–999, 2005.

[10] W.R. de Oliveira, M. C. P. de Souto, and T.B. Ludermir. Turing’s analysis of computation
and artificial neural networks. Journal of Intelligent & Fuzzy Systems, 13(2-4):85–98,
2003.

[11] M. O. Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.

[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Pearson Addison-Wesley, Upper Saddle River, NJ, 3 edition,
2007.

[13] J.G. Taylor. Spontaneous behaviour in neural networks. Journal of Theoretical Biology,
36:513– 528, 1972.

[14] E.C.D.B.C. Filho, M.C. Fairhist, and D. L. Bisset. Adaptive pattern recognition using
the goal seaking neuron. Pattern Recognition Letters, 12:131–138, 1991.

552

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

