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Abstract. Due to the large amount and complexity of data available
in geosciences, machine learning nowadays plays an important role in en-
vironmental data mining. In many real data cases, we face the need to
design input space with the most relevant features. Because the main goal
is to understand and find relationships between phenomena and features,
feature selection is preferred to feature transformation or extraction. To
deal with the high-dimensional space of environmental data, a wrapper
method based on Extreme Learning Machine and global optimization al-
gorithm (Simulated Annealing) is proposed. This paper investigates the
whole methodology and shows promising results for environmental data
feature selection and modelling.

1 Introduction

Environmental science is a field in constant development. Because environ-
mental phenomena lie in high dimensional spaces (e.g. for natural hazards:
d ≈ 10 − 100), it is challenging to reach the real dimension where the phenom-
ena under study can be understood, explained and predicted [6]. Moreover, in
most real data cases the relationships between features and phenomena are non-
linear. Keeping in mind that these relationships involve not only one but several
features, the main goal is to select relevant subsets of features according to their
potential non-linear ability to explain or predict environmental phenomena.

There are a lot of methods in wrapper, filter and embedded methodologies
[3][4][8]. On the one hand filter methods are faster but do not necessarily take
into account the combinations of various features simultaneously (a feature can
be irrelevant alone but may be relevant with other features together). On the
other hand wrapper methods allow complex associations of features but suffer
from the curse of dimensionality when considering all possible combinations of
features.

To address this challenge, this paper proposes a new methodology based
on combining Extreme Learning Machine (ELM)[5] and Simulated Annealing
(SAN)[7] algorithms. ELM has showed good capability for merging methods
[1] and SAN remains a good optimization algorithm despite the fact that it
can perform faster by combining with a genetic algorithm [2]. The principal
advantages of this new method are the following: (1) ELM allows the quick
evaluation of the non-linear potential of subsets of features, (2) SAN allows the
optimal subset of features to be reached without using an exhaustive search.
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The use of ELM instead of the more robust and accurate OP-ELM [10] resides
in the fact that current version of OP-ELM cancel out the wrapper ability to
detect irrelevant feature. The methodology is described in Section 2. Section 3
presents the results using real and simulated data, and Section 4 concludes the
paper.

2 Method

2.1 Extreme Learning Machine

The ELM algorithm follows the structure of a single-hidden layer feedforward
neural network (SLFN)[5]. For a given labelled training set Ztrn = {(xi, yi) |
xi ∈ R

n, yi ∈ R}Ni=1 and for a number of hidden nodes Ñ , it computes the output
matrix N × Ñ of the hidden layer:

Hij = g(xi ·wj + bj)

where wj (the vector of weights connecting the input layer with the jth neuron)
and bj (the bias of the jth neuron) are randomly generated. Then, the vector
β (connecting the hidden layer with the output layer) is estimated using the
Moore-Penrose generalized inverse of the matrix H :

β̂ = H†y

Once all weights of the network are known, new data can be evaluated and error
assessed using a hold-out validation set. Extremely fast, the only parameter that
requires tuning is the number of hidden node Ñ . See in Section 3.2 how to deal
with this parameter in order to preserve the computational time.

2.2 Simulated Annealing

SAN is a metaheuristic algorithm for optimization problems inspired by the
field of metallurgy. Initialized with a high temperature parameter, it performs
a global random search from neighbour to neighbour. In a second stage, tem-
perature decreases progressively and the search becomes local. Based on the
following Metropolis criterion [9], it has the capability to accept bad solutions
according to the level of the current temperature T .

Let θcur and θnew respectively be the current and new states of the research,
and f the function to minimize. If Δf = f(θcur) − f(θnew) ≤ 0 the new state
θnew is accepted, else θnew is accepted with a probability:

P = exp(−Δf/T )
In a theoretical way, the ability to accept bad solutions allows us to find

the global minimum of any kind of problem. In a practical way, it cannot
guarantee finding the optimal solution but it can approach it. The success of
this convergence lies in a good parametrization of the initial temperature and in
the annealing process.
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2.3 Feature Selection Methodology

Let n be the number of features available and Θ = {θ | θ = {0, 1}n} the set of
the whole combination of features, where θi indicates if we consider feature i or
not. The goal is to find θ∗ ∈ Θ that minimizes the cost function f defined as
follows:

f(θ) = MSE(yval, ŷval)

where, ŷval = ELM(θ, Ñ , Ztrn, Zval)

Ztrn and Zval correspond to two separate training and validation sets, and Ñ
is the number of hidden nodes. Without loss of generality, Ñ can be defined a
priori (see experimental part 3).

Applying this notation and using the simulated annealing algorithm, the
proposed new feature selection algorithm is as follows:

Algorithm 1 SANELM

Require: Initialize θ0 ∈ Θ and T0 the initial temperature
1: Generate a model with ELM(θ0, Ñ , Ztrn, Zval)
2: Compute f(θ0), and put θcur = θ0
3: for i = 1 to STOP do
4: Compute Tnew = Ann(T0, i)
5: Generate θnew in the neighbourhood of θcur
6: Compute f(θnew) and Δf = f(θcur)− f(θnew)
7: if Δf ≤ 0 then
8: Accept θnew: θcur ← θnew
9: else

10: Generate U uniformly in [0, 1], and compute P = exp(−Δf/Tcur)
11: if U ≤ P then
12: Accept θnew: θcur ← θnew
13: else
14: Reject θnew
15: end if
16: end if
17: end for

For more details of the methodology, see section 3.2.

3 Data and Results

3.1 Data

The data used for this application come from 200 measurement points in Lake
Geneva. Composed of 3 real input variables (i.e. X , Y and Z coordinates),
21 simulated variables were added to the database. These additional input
variables are composed of 3 shuffled variables from the original X , Y and Z co-
ordinates, and of 18 random variables following a uniform distribution. Finally,
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the database was composed of 21 input variables and 1 output variable which is
the pollutant, Nickel.

The principal objective is to investigate the parameter of the SANELM for
this particular database, important for environmental risk studies and to eval-
uate the robustness and the accuracy of such methodology according to the
parameters. The expected result is to find the original features, that is the X ,
Y and Z coordinates.

3.2 Experimental setup

First of all, the whole database must be normalized in order to fit to the range
[0, 1] within which ELM works. Secondly, because of the need to assess the ELM
model at each iteration of the SAN algorithm, the database must be split into
two subsets. About 75 per cent of the data are allocated to the training set and
the remaining 25 to the validation set.

Once the preprocessing task is completed, several SAN parameters have to be
fitted. The first one is the annealing schedule Ann(T0, i). Written as a function
of the initial temperature T0 and the iteration index i, the schedule can take
different forms. No preferential function exists, but as the optimization space Θ
is discrete and not continuous, a basic schedule can be considered such as:

Ann(T0, i) =
T0
c · i or Ann(T0, i) =

T0
c · log(i)

where c is the parameter of the schedule. In practice, since T0 and c have to be
parametrized, the most simple way is to fix c = 1 and to fit the parameter T0
by trial and error.

Another important proceeding in the algorithm is the generation of a new
state θnew ∈ Θ in the neighbourhood of the current state θcur. For this purpose,
θnew is defined as a neighbour of θcur if and only if the Hamming distance
between the two is equal to 1 (i.e. θnew and θcur differ in just one coefficient).
This allows them to reach any state of the Θ space in at least n steps (where n
is the number of input variable).

In order to complete the parameter setup, it remains to tune the number
of hidden nodes Ñ . In the first stage of the paper, an additional loop was
added in the algorithm in order to compute f(θnew) with the optimal number
of hidden nodes. Because this process is time consuming, an analysis of the
distribution of the optimal number of node was carried out. It appears that this
distribution shows the same range of optimal number of nodes for any kind of
θ ∈ Θ. Furthermore, if we fix the number of nodes Ñ that is not necessary the
optimal one for the desired best subset of features θ∗, it appears that

f(θ∗) ≤ f(θ) ∀θ ∈ Θ

In other words, even if the model f is not perfect for a fixed number of hidden
nodes Ñ , it would be minimal for subset of relevant features.
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3.3 Results

The first results show the stability of the methodology according to the choice of
the number of hidden nodes Ñ . For this purpose, 1000 subsets of features were
generated randomly and all are evaluated with ELM for Ñ ∈ {5, 10, 15, ..., 70}.
In Figure 1 each dashed line correspond to one random subset of features and
the solid line coincides with the best subset of features. Examining 1000 random
subsets of features reveals that the range of the number of hidden nodes where
they reach the minimum value of MSE is approximately [15, 30].
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Fig. 1: Each dashed line correspond to one random subset of features and the
solid line coincides with the best subset of features. The graph shows the MSE
of the ELM for these different subsets of features according to the number of
hidden nodes.

According to this first result, it is recommended that for each new problem
the behaviour of Ñ is explored through randomly generative several subsets of
features. By doing this, the range of the minimum number of nodes can be
determined, and the SANELM algorithm can be performed using a fixed Ñ in
that range.
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By using the Lake Geneva database with the additional 18 irrelevant variables
and with a fixed Ñ = 20, the SANELM algorithm reaches the optimal subset of
feature, that is the original X , Y and Z coordinates, in less than 4000 iterations.
By comparison, the exhaustive search need 2n − 1 iterations (in this case more
than 2 million) to evaluate all the possible combinations of features. The same
results are obtained using different Ñ ∈ [15, 30].

4 Conclusion

This paper develops a combination of two algorithms, the Extreme Learning
Machine as a wrapper method and the Simulated Annealing as an optimization
algorithm. Analyses were performed in order to investigate the behaviour of
both ELM and SAN parameters. As the optimization space is a discrete one,
the annealing schedule of SAN can be standard. For the remaining T0 and c
parameters, trial and error are needed according to the complexity and dimen-
sionality of the problem. For the unique ELM parameter Ñ (the number of
hidden nodes), it has been shown that it is quite stable within the range de-
termined by the problem. Therefore, Ñ can be fixed during the process and
computational time can be reduced. In future research, this benefit will allow to
investigate more complex phenomena in high dimensional space and multivari-
ate data, as well as to perform a comprehensive comparison in computational
time and accuracy with other feature selection algorithms.
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