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Abstract. Exemplar based techniques such as affinity propagation [1] represent
data in terms of typical exemplars. This has two benefits: (i) the resulting mod-
els are directly interpretable by humans since representative exemplars can be in-
spected in the same way as data points, (ii) the model can be applied to any dis-
similarity measure including non-Euclidean or non-metric settings. Most exemplar
based techniques have been proposed in the unsupervised setting only, such that
their performance in supervised learning tasks can be weak depending on the given
data. Here, we address the problem of learning exemplar-based models for gen-
eral dissimilarity data in a discriminative framework. For this purpose, we extend a
generative model proposed in [2] to an exemplar based scenario using a generalized
EM framework for its optimization. The resulting classifiers represent data in terms
of sparse models while keeping high performance in state-of-the art benchmarks.

1 Introduction
Machine learning has revolutionized the possibility to deal with large data sets. Never-
theless, rapid technological developments continue to pose challenges to the field, such
as the big data challenge, or the problem of complex non-vectorial structures, which are
increasingly common. Examples of the latter include biological sequences, mass spec-
tra, or metabolic networks, where complex alignment techniques, background informa-
tion, or general information theoretical principles, for example, drive the comparison of
data points [3, 4, 5]. These data cannot be embedded in Euclidean space, and they of-
ten do not even fulfill the properties of a metric. Further, dissimilarities might fail due
to asymmetry. These developments have caused the need for non-vectorial machine
learning tools such as e.g. structure kernels, recursive and relational models, affinity
propagation (AP) or quotient embeddings [6, 7, 1, 8]. While learning tasks become
more and more complex a vital property of machine learning models in this context
is their interpretability. Popular black box techniques such as the SVM often provide
an excellent classification performance, but no insight on why this decision is obtained
such that relevant information can be inferred based thereon by a human observer.
The demand of interpretability can be met with quite diverse technologies, such as spar-
sity, relevance learning, or enhancement by visualization [9]. Yet, dissimilarity based
learning is usually easy to interpret the decision if a small number of most similar neigh-
bors with known labels accounts for the observed classification . These neighbors can
directly be inspected by experts in the same way as data points. Dissimilarity based
techniques can be distinguished according to different criteria: (i) Sparsity: The num-
ber of data points used to represent the classifier ranging from dense models such as
k-nearest neighbor to sparse representations such as prototype based methods. Usually,
sparsity supports interpretability of the models. (ii) Complexity of the dissimilarity
measure the methods can deal with ranging from vectorial techniques restricted to Eu-
clidean spaces, adaptive models which learn the underlying metrics, up to tools which
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can deal with arbitrary similarities or dissimilarities [10, 11, 12]. (ii) Degree of super-
vision ranging from clustering techniques such as AP to supervised learning.
Learning vector quantization (LVQ) constitutes one of the few methods to infer a sparse
representation in terms of prototypes from a given data set in a supervised way [13],
which decisions can directly be inspected by humans. Albeit original LVQ has been
introduced on somewhat heuristic grounds [13], recent developments provide a solid
mathematics, its generalization ability and learning dynamics [14, 11, 2, 15]. A severe
drawback of LVQ classifiers is their dependency on the Euclidean metric. This problem
can partially be avoided by appropriate metric learning, see e.g. [11], or by kernel vari-
ants, see e.g. [12, 16]. However, if data are inherently non-Euclidean, these techniques
cannot be applied. Recently, an extension of LVQ type learning by means of an implicit
pseudo-euclidean embedding has been proposed [17]. Although yielding excellent re-
sults, this technique faces two problems: it cannot be applied for asymmetric dissimilar-
ities where no pseudo-euclidean embedding exists; by representing prototypes in terms
of distributed coefficient vectors, the easy interpretability of LVQ’s is lost.
In this contribution, we take an alternative point of view: we address LVQ algorithms
derived from generative statistical models, and we extend these techniques to exemplar
based learners suitable for arbitrary dissimilarities, similar to the unsupervised setting
as proposed in [1]. A training algorithm can be derived as a generalized expectation
maximaization (EM) scheme, yielding a state-of-the-art classifier with superior perfor-
mance as opposed to unsupervised exemplar-based approaches [1].

2 Supervised generative models in Euclidean space
Assume the data space X is a standard Euclidean vector space. Assume data points
x1, . . . , xN together with labels y1, . . . , yN ∈ {1, . . . , C} are given. Robust soft learn-
ing vector quantization (RSLVQ) as proposed in [2] represents data in terms of a mix-
ture model with model parameters Θ = {θ1, . . . , θM} ∈ X which induce the probability

p(xi|Θ) =
M∑
j=1

p(θj)p(xi|θj)

where, typically, the prior probabilities p(θj) are chosen as constant and p(xi|θj) is
given by a Gaussian distribution in Euclidean space. In [2], the correlation matrix is
taken as unit matrix, a generalization towards a general form has been proposed in [18].
For such a mixture of Gaussian, the model parameters θi take the role of prototypes and
they can serve as an interface towards an interpretation of the model.
For the supervised setting, every prototype is equipped with a class label ci ∈
{1, . . . , C}, yielding the joint distribution

p(xi, yi|Θ) =
M∑
j=1

δyi
cj · p(θj)p(xi|θj)

with Kronecker δ. Marginalization gives p(yi|Θ) =
∑M

j=1 δ
yi
cj · p(θj). Thus

p(yi|xi,Θ) =
p(xi, yi|Θ)

p(xi|Θ)
=

∑M
j=1 δ

yi
cj · p(θj)p(xi|θj)∑M

j=1 p(θj)p(xi|θj)
.
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Trainings takes place by an optimization of the log likelihood ratio as cost function

K(X,Θ) =
N∑
i=1

ln p(yi|xi,Θ) (1)

assuming i.i.d. data. In Euclidean space, gradient methods can be used for optimization.

3 Supervised generative models for dissimilarity data
Assume X is a possibly non-Euclidean measurable space equipped with a probability
distribution p. The cost function of RSLVQ can be transferred to this setting provided a
suitable probability measure p(xi|θj) is given. There remain, however, two problems:
1) In the absence of an underlying vector space, how to define a suitable probability
p(xi|θj) and a suitable space of parameters θj for this model, which still yields in-
terpretable representations? 2) How to train the model? Optimization by means of
gradient techniques is usually impossible unless X is embedded in a real-vector space.
Here, we restrict ourself in settings of pairwise dissimilarities d(xi, xj) ≥ 0 only, as
discussed e.g. in [19, 20]. Thereby, we do not suppose Euclideanity of d, in which case
kernel techniques can be used. Nor do we assume symmetry, which would enable the
embedding into pseudo-Euclidean spaces [19].
Since the underlying space X is unknown, we take an exemplar based approach similar
to [1]: model parameters θj are restricted to data points {x1, . . . , xN}, such that the
dissimilarity d(xi, θj) is always well defined. If d is measurable and non negative, we
can define a probability in analogy to Gaussians as

p(xi|θj) =
1

Kj
· exp(−d(xi, θj)/σ

2)

with normalizing constant Kj =
´
X exp(−d(xi, θj)/σ

2)dp(x). Thereby, Kj is usually
not known and it has to be estimated from data; for simplicity, isotropy is often as-
sumed, i.e. Kj is constant. Note that this choice preserves interpretability of the model
parameters θj provided d constitutes a reasonable dissimilarity measure, since decisions
are based on the dissimilarity compared to the closest exemplar.
For optimization of the model parameters, instead of gradient techniques as used in the
vectorial case, a generalized EM strategy is possible. For this purpose, we consider the
nonnegative function

g(xi, yi, θj) = δyi
cj ·

p(θj)p(xi|θj)∑M
j=1 p(θj)p(xi|θj)

and p(θj |xi, yi) =
g(xi, yi, θj)∑M
j=1 g(xi, yi, θj)

defining the conditional probability of θj . Then, the objective (1) decomposes into

K(X,Θ) =
N∑
i=1

ln
M∑
j=1

g(xi, yi, θj) =
N∑
i=1

Li (γ,Θ) +
N∑
i=1

Ki (γ||p) (2)

with γ(θj |xi, yi) is an arbitrary probability distribution of the mode θj conditioned on
the point xi with label yi, see [21]. Further, we have

Li (γ,Θ) =

M∑
j=1

γ(θj | xi, yi) ln

(
g(xi, yi, θj)

γ(θj | xi, yi)

)
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Algorithm 1 Generalized EM algorithm for optimization of the cost function K(X,Θ)

1. Initialize Θold

2. E Step: γji := γ(θj | xi, yi)← p(θold
j | xi, yi) ∀j, i

3. M Step: for fixed γji, determine Θnew which improves the function∑N
i=1 Li (γ,Θ)

4. If Θnew = Θold then stop, else set: Θold ← Θnew and go to step 2.

and

Ki(γ||p) = −
M∑
j=1

γ(θj | xi, yi) ln

(
p(θj | xi, yi)
γ(θj | xi, yi)

)
denotes the (nonnegative) Kullback-Leibler divergence between p(θj | xi, yi) and
γ(θj | xi, yi) such that

∑N
i=1 Li (γ,Θ) constitutes a lower bound for K(X,Θ).

Within a generalized EM scheme, starting from a random initialization of the model
parameters θj as random data points xi with suitable label, an iterative improvement of
the objective is possible as shown in Algorithm 1, similar to a classical EM scheme as
introduced in [22, 23]. Note that the objectiveK(X,Θ) is improved in every adaptation
cycle, since step 2 sets the Kullback-Leibler divergence to 0 such that, for this choice
of γji, the objective coincides with its lower bound

∑N
i=1 Li (γ,Θ). Step 3 improves

this function per definition. Since only a finite number of different model parameters θj
are available, stemming from the given exemplars, the algorithm converges in a finite
number of iterations. For details we refer to [21].

4 Experiments
We evaluate the proposed model in comparison to alternatives using seven benchmark
scenarios as proposed and described in [20]. These benchmarks contain dissimilarity
data represented in terms of pairwise symmetric dissimilarities only, which are in gen-
eral non-Euclidean, such that SVM techniques can only applied after appropriate pre-
processing [20]. In addition to SVM, we compare to an exemplar-based unsupervised
clustering with posterior labeling obtained by AP [1], and kernel LVQ variants and
relational LVQ, which implicitly embed data into the Euclidean or pseudo-Euclidean
space [17]. Note that only the exemplar based techniques AP and the LVQ variant as
developed in this contribution represent data in terms of a small number of exemplars
suitable for a direct inspection. Both, kernel and relational LVQ, represent prototypes
in terms of distributed coefficients only. For SVM and kernel variants, preprocessing of
non-Euclidean data is necessary; for this purpose the best results obtained by clip, flip,
or shift are reported [20].
One can characterize the non-Euclideanity of the data by a reference to the signature,
which corresponds to the triplet formed by the number of positive eigenvalues, the
number of negative eigenvalues, and the number of (numerically) zero eigenvalues of
a pseudo-Euclidean embedding of the data [19]. Obviously, data are pdf iff the second
entry is zero. For the used datasets we obtain the following signature values:

Voting Aural Protein FaceRec Sonatas Chromosom Vibrio
(16,1,418) (61,38,1) (169,38,6) (45,0,900) (1063,4,1) (1951,2206,43) (573,527,0)
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mRSLVQ mGLVQ Relational/Kernel AP SVM # Prototypes
RSLVQ/GLVQ

Voting 0.956 0.956 0.9466 0.935 0.9511 20 (20)
Aural 0.91 0.907 0.8875 0.685 0.88 6 (10)

Protein 0.912 0.904 0.986 0.771 0.9802 4 (20)
Face Rec 0.986 0.987 0.9665 0.951 0.9627 139 (139)
Sonatas 0.799 0.808 0.8493 0.7087 0.8914 5 (5)

Chromosom 0.854 0.889 0.9571 0.895 0.9755 105 (21)
Vibrio 1 1 1 0.99 1 49 (49)

Table 1: Averaged results of Median RSLVQ (mRSLVQ) and Median GLVQ (mGLVQ) in com-
parison with the best results for Relational and Kernel variants of LVQ, with Affinity Propagation
(AP) and Support Vector Machines (SVM), see text. The last column contains the number of pro-
totypes used for mRSLVQ/mGLVQ and in brackets the number of prototypes which was used for
the kernel / relational variants.

This indicates, that Voting, FaceRec, and Sonatas are almost Euclidean while all other
data contain a significant contribution of non-Euclidean nature.
For all experiments, the setup as described in [20] is used, i.e. results are obtained by
a repeated ten-fold cross-validation with ten repeats. Parameters are optimized by a
cross-validation within this scheme. The number of prototypes is chosen as a small
multiple of the number of classes. We report the result of median RSLVQ and median
GLVQ (mGLVQ), which can be derived in an analogous way based on the cost function
of the generalized LVQ (GLVQ) [24], the latter implicitly formalizing the objective to
optimize the hypothesis margin of the classifier [25, 11]. To avoid local optima while
iterative optimization of the M step, we use 10 random restarts for this step.
Interestingly, the median variants based on a probabilistic framework (mRSLVQ) and a
large hypothesis margin approach (mGLVQ) provide almost identical results. In all but
one case, the two discriminative exemplar-based techniques improve the performance
of the exemplar based unsupervised method AP, clearly indicating that taking label
information into account while training has beneficial effects for clustering tasks. In
all but one case, the results obtained by median LVQ variants are comparable to best
results obtained by relational or kernel LVQ variants, the latter implicitly embedding
data in a high dimensional Hilbert space (possibly after preprocessing a non-Euclidean
data matrix), or pseudo-Euclidean case, respectively. Unlike the latter which represent
prototypes in a distributed way, median LVQ represents prototypes in the form of a
single exemplar, i.e. a data point, which can be directly inspected by a human observer
in the same form as data points. In three cases, the results obtained by median LVQ
are better than SVM, whereby the former represent data in terms of a small number of
representative exemplars and not by points lying at the class boundaries, and the former
do not require preprocessing of the data in case of a non-Euclidean signature.
For two data sets, Sonatas and Chromosomes, the classification accuracy is worse than
SVM results by 10%. These data sets are the two largest data sets each containing more
than 1000 data points. It can be expected that SVM benefits from the possibility to
fine tune the decision boundaries in these cases, which is not possible for LVQ variants
with a small number of prototypes per class. Interestingly, Chromosomes is the only
data set where the unsupervised exemplar based technique (AP) and relational variants
outperform the classification accuracy by at least 4%.

5 Conclusions
The supervised generative model RSLVQ has been extended to general dissimilarity
data by means of an exemplar based approach. Optimization of the cost function could
be done based on a generalized EM scheme, which provably converges towards a local
optimum in a finite number of steps in this setting. Unlike relational or kernel LVQ
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variants, the model preserves the intuitive interpretability of classical LVQ for the non-
Euclidean case by restricting prototypes to data positions. Unlike kernel techniques,
preprocessing of non-Euclidean data to enforce pdf is superfluous. As demonstrated in
experiments, this approach can lead to sparse models with state-of-the-art performance.
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