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Abstract. We propose a framework for classification learning based on general-
ized learning vector quantization using statistical quality measures as cost function.
Statistical measures like the F -measure or the Matthews correlation coefficient re-
flect better the performance for two-class classification problems than the simple
accuracy, in particular if the data classes are imbalanced. For this purpose, we in-
troduce soft approximations of those quantities contained in the confusion matrix,
which are the basis for the calculation of the quality measures.

1 Introduction
Classification of data is one of the most frequent task in machine learning and statistical
data analysis. Many methods and approaches were developed ranging from prototype
based classifiers like Support Vector Machines (SVMs, [1]) or the family of Learn-
ing Vector Quantizers (LVQs, [2]) to classification trees. These approaches as well
as classical statistical approaches like linear discriminant analysis (LDA) typically try
to minimize the classification error or at least approximations thereof. Accordingly,
classifiers are compared in most cases by the equivalent classification accuracy.
Yet, the performance evaluation of a classifier only based on the accuracy is not the
full truth. In case of imbalanced data the classification accuracy might be very high al-
though an underrepresented class is poorly recognized. This classifier learning problem
frequently occurs in medicine, when only a few patient data are available in comparison
to the number of data of volunteers [3, 4, 5]. For this reason, other statistical assess-
ment measures like precision and recall are more favored. Both values are based on the
appraisal of the confusion matrix (CM). The direct evaluation of the entries of the CM
is also important if the different types of misclassifications (false negatives / false posi-
tives) cause different costs [6]. We denote this scenario as an asymmetric classification
task (ACT).
Several classification quality indices based on confusion matrix are known in statistical
data analysis emphasizing different aspect. Well-known are the F -measure, the χ2-
statistics or the Jaccard-Index [7]. Thus, a direct optimization of these quantities by a
learning classifier model would be desirable and was recently proposed for the in F -
measure [8, 9]. Yet, the underlying learning models neither allow an easy interpretation
nor optimization of other indices of the confusion matrix.
In this paper we present an classifier approach for optimization of those statistical mea-
sures, which is based on the generalized learning vector quantization (GLVQ) model
[10]. The GLVQ classifier is a cost function based modification of the intuitive learn-
ing vector quantization model introduced by KOHONEN [11]. Whereas the latter one
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heuristically approximates a Bayes-classifier, GLVQ takes an approximation of the clas-
sification accuracy as objective. Generally, LVQ models are easy to interpret according
to its paradigm as prototype based classifiers. We modify the GLVQ approach in such a
manner that arbitrary statistical evaluation measures based on the classification confu-
sion matrix can be optimized. The main ingredient for this modification is the utilization
of the recently proposed border sensitive learning in GLVQ [12, 13].

2 Classification Accuracy Maximization by GLVQ
A cost function based variant of LVQ was proposed by SATO&YAMADA (Generalized
LVQ - GLVQ, [10]). For this model we suppose data vectors v ∈ V ⊆ Rn. The
prototypes of the GLVQ model are the set W = {wk ∈ Rn, k = 1 . . .M}. Each data
vector v of the training data belongs to a class xv ∈ C = {1, . . . , C}. The prototypes
are labeled by yk ∈ C. Further d+ (v) = d (v,w+) denotes the dissimilarity between
the data vector v and the closest prototype w+ with the same class label yw+ = xv,
and d− (v) = d (v,w−) is the dissimilarity degree for the best matching prototype
w− with a class label yw− different from xv. Whereas the original LVQ heuristically
optimizes the Bayes decision [11], GLVQ maximizes the hypothesis margin m (v) =
d+ (v)− d− (v) [14, 15]. The respective cost function minimized by GLVQ is

EGLVQ (W ) =
1

2

∑
v∈V

f (µ (v)) (1)

where f is a monotonically increasing transfer or squashing function usually chosen as
sigmoid or the identity function and

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the classifier function. We remark that µ (v) ∈ [−1, 1]. The dissimilarity measure
d (v,wk) is not necessarily required to be a metric [16] but is assumed to be differen-
tiable with respect to wk for stochastic gradient learning.
Learning in GLVQ of w+ and w− is usually performed by the stochastic gradient
descent with respect to the cost function EGLVQ for a given data vector v. Recent
approaches include relational and median learning [17, 18, 19].
The recall for a given data point v is realized via a winner take all rule: Let

s (v) = argminMk=1 (d (v,wk)) (3)

be the index of the matching unit. The respective prototype label ys(v) is the predicted
class of the classifier.

3 Classification Accuracy and Statistical Measures in GLVQ
We observe that the classifier function µ (v) from (2) becomes negative if the data point
v is correctly classified, i.e. if xv = ys(v) is valid. Further, the transfer function f in
(1) is frequently chosen as the sigmoid function

fθ (x) =
1

1 + exp
(
−xθ
) (4)

with the parameter θ determining the slope [20]. In the limit θ → 0 the sigmoid fθ
becomes the Heaviside function H (x), such that the cost function EGLVQ approxi-
mately counts the misclassifications in the GLVQ for this case. The respective variant
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labels true
C+ C−

predicted C+ TP FP N̂+

C− FN TN N̂−
N+ N− N

Table 1: Confusion matrix: TP - true positives, FP - false positives, TN - true negatives,
FN - false negatives, N±- number of positive/negative data, N̂+ - number of predicted posi-
tive/negative data.

of GLVQ is known as border-sensitive GLVQ (BS-GLVQ,[13]). Hence, EBS−GLVQ is
implicitly based on the classification accuracy evaluation.
Yet, accuracy is not always an appropriate to evaluate a classifier, in particular, if the
data are imbalanced [7]. For example, assigning each object to the larger class achieves
a high proportion of correct predictions, but is not a useful classification at all. In sta-
tistical analysis contingency table evaluations are well-known to deal with this problem
more properly. In case of two-class problems with classesC+ andC− the table contains
the confusion matrix Tab. 3.
Several measures were developed to judge the classification quality based on the con-
fusion matrix emphasizing different aspects. The quantities precision π and recall ρ
defined by

π =
TP

TP + FP
=
TP

N̂+

and ρ =
TP

TP + FN
=
TP

N+
(5)

respectively, are used in the widely applied Fβ-measure

Fβ =

(
1 + β2

)
· π · ρ

β2 · π + ρ
(6)

developed by C.J. VAN RIJSBERGEN [21]. For the common choice β = 1 it is the
fraction of the harmonic and the arithmetic mean of precision and recall, i.e. β controls
the influence of both values. Further, the specificity ς and the negative prediction rate

ς =
TN

TN + FP
=
TN

N−
and ξ =

TN

TN + FN
=
TN

N̂−
(7)

are frequently considered in medical applications. These values can be combined in the
weighted accuracy

wACΣ = α1ρ+ α2π + α3ς + α4ξ

with the signature Σ = (α1, α2, α3, α4). Another measure considering all four quanti-
ties of the confusion matrix is the Matthews correlation coefficient

MMC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
, (8)

which is equivalent to the χ2-statistics for a 2×2 contingency table [22, 7].
In the following we propose a framework to integrate them into the GLVQ. The idea be-
hind is to keep the basic ingredients of GLVQ, which are prototype based classification,
gradient descent learning, and the dissimilarity based classifier function µ (v).
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At this point we restrict ourselves to the two-class scenario {C+, C−} of a positive
class C+ with class label ’⊕’ and a negative class C− with class label ’	’. Following
the observation that the transfer function fθ (4) approximates the Heaviside function
H , we consider a modified classifier function µ̂ (v) = fθ (−µ (v)) with µ̂ (v) ≈ 1 iff
the data point v is correctly classified and µ̂ (v) ≈ 0 otherwise. Now we can express
all quantities of the confusion matrix in terms of the new classifier function µ̂ (v):

TP =
N∑
j=1

δ⊕,xvj
· µ̂ (vj) , FP =

N∑
j=1

δ	,xvj
· (1− µ̂ (vj))

FN =
N∑
j=1

δ⊕,xvj
· (1− µ̂ (vj)) and TN =

N∑
j=1

δ	,xvj
· µ̂ (vj)

with δ⊕,xvj
is the Kronecker symbol and δ	,xvj

= 1 − δ⊕,xvj
. Obviously, all these

quantities are differentiable with respect to µ̂ (vj) and, hence, also with respect to the
prototypes wk. Now, we suppose a general statistical measure S (TP, FP, FN, TN)
to be minimized, which is continuous and differentiable with respect to TP, FP, FN ,
and TN . Thus, it is also differentiable with respect to the prototypes via the chain rule
for differentiation, e.g. ∂S

∂wk
= ∂S

∂TN ·
∂TN
∂wk

. Therefor, they can easily plugged into
GLVQ serving as a new cost function and not violating the stochastic gradient learning.
Hence, the GLVQ can be used in a statistical framework. Clearly, the above mentioned
measures Fβ , MMC, and wACΣ belong to this function class and, therefore, can be
plugged into the GLVQ scheme.

4 Simulations
Due to the lack of space, we only report here the results for one real world data set.
Other simulation results can be found in [23]. We consider a dataset of neurophysiolog-
ical data of Wilson disease (WD) patients and probands. WD is an autosomal-recessive
disorder copper metabolism in the liver such that suffering patients develop neurophys-
iological impairments. Thus, in the initial non-neurologic phase, impairments are neg-
ligible or at least not defacing, whereas later on (neurologic phase) the disturbances be-
come severe [24]. Yet, there is a smooth transition between both phases. To judge the
neurological impairments a 18F-Fluorodesoxyglucose-Positron-Emission-Tomography
([18F]FDG-PET,[3]) was applied delivering a neurological impairment profile for each
patient/proband. It consists of a 11-dimensional vector with the normalized glucose
consumption in different brain regions (frontal lobe,parietal lobe, temporal lobe, oc-
cipital lobe, ant. cingulum, post cingulum, putamen, caput nuclei caudati, cerebellum,
midbrain, thalamic area). A detailed description can be found in [25]. Additionally,
a clinical diagnosis suggests an assignment to the neurologic/non-neurologic type [3].
We used this dataset to learn the classification decision based on the neurophysiological
impairment profile. The dataset contains 15 proband samples 16 non-neurologic and 34
neurologic samples (N). Probands and non-neurologic patients form the non-neurologic
group (NN). All results are obtained from 8-fold cross-validation.
First, we conducted standard GLVQ learning as a baseline for comparison. Thereafter,
we applied the modified GLVQ with the Fβ from (6) for several β-values, see Tab. (2).
For all experiments we calculated also Fβ-values. We observe the expected behavior,
i.e. the best Fβ-values are achieved if the respective cost function was optimized. More-
over, standard GLVQ does not yield as good Fβ-results as the modified GLVQ. Further,
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GLVQ Fβ-GLVQ Fβ-GLVQ Fβ-GLVQ
β2 = 0.5 β2 = 1 β2 = 2

confusion matrix true true true true
N NN N NN N NN N NN

prediction N 90.9% 28.0% 88.5% 7.2% 93.6% 11.1% 96.7% 15.4%
NN 9.1% 72.0% 11.5% 92.8% 6.4% 88.9% 3.2% 84.6%

Fβ-measure (β2 = 0.5) 0.790 0.907 0.901 0.887
Fβ-measure (β2 = 1) 0.816 0.902 0.910 0.906
Fβ-measure (β2 = 2) 0.845 0.896 0.918 0.926

precision 0.741 0.918 0.885 0.852
recall 0.909 0.885 0.936 0.968

Table 2: Classification results for the Wilsons disease data set for different types of GLVQ using
one prototype per class.

it is well-known that Fβ emphasizes high precision for small β-values, whereas recall
is more weighted with increasing β-values. This behavior is nicely observable for the
experiments. Thus, the experiments show the ability of the modified GLVQ to optimize
statistical measure based on the confusion matrix entries.
From a medical point of view, the simulations show that the neurologic phase in WD
can clearly distinguished from the neurologic state only considering the [18F]FDG-PET
profiles.

5 Conclusion
In the present paper we propose a modified GLVQ using statistical measures for the
underlying cost function. The statistical measures are assumed to be continuously de-
pending on the entries of the confusion matrix and differentiable. Then, the key idea
is to use the smooth approximations of the quantities of the confusion matrix when
the statistical measure is taken to replace the original accuracy based cost function in
GLVQ. In this way, the basic principles of GLVQ-like prototype based classification
and gradient descent learning are kept.
Thus, the new approach is an alternative to recently proposed classifier systems based
on SVM and multilayer perceptron optimizing the F1-objective [26, 9]. Further, the
general formulation allows the utilization of other statistical measures like specificity,
precision or recall, to reflect different aspects in classification learning, which are im-
portant for imbalanced class data and asymmetric classification tasks.
We presented the framework for a two-class scenario so far. Extensions to more classes
could be greedy strategies like hierarchical or weighted one-versus-all classification
schemes as suggested in [27]. This, however, remains topic for future research as well
as the integration of such statistical measurements into fuzzy classification schemes.
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