
Sparse One Hidden Layer MLPs

Alberto Torres, David Dı́az and José R. Dorronsoro

Universidad Autónoma de Madrid - Departamento de Ingenieŕıa Informática
Tomás y Valiente 11, 28049 Madrid - Spain

Abstract. We discuss how to build sparse one hidden layer MLP replac-
ing the standard l2 weight decay penalty on all weights by an l1 penalty on
the linear output weights. We will propose an iterative two step training
procedure where the output weights are found using FISTA proximal op-
timization algorithm to solve a Lasso-like problem and the hidden weights
are computed by unconstrained minimization. As we shall discuss, the
procedure has a complexity equivalent to that of standard MLP training,
yields MLPs with similar performance and, as a by product, automatically
selects the number of hidden units.

1 Introduction

Sparse modelling is attracting an increasing attention in problems with very
high dimension, often larger than sample size itself. They are thus ill posed,
prone to over-fitting and, if no correcting action is taken, likely to yield poor
models. Sparse methods try to remedy this, and two approaches are emerging
in the literature. In the first one, sparsity is achieved using sparsity-enforcing
priors in a Bayesian setting [1, 2]. The alternative that we consider here is to
add a sparsity enforcing regularizer to the problem natural criterion function.
This approach leads to the convex optimization problem min f + g, where f is
a smooth convex function (usually the model criterion) and g is also convex but
not differentiable (the sparsity enforcing term). The first example is the Lasso
problem [3] where f is the MSE criterion of a linear model and g is the l1 weight
norm. This yields sparse linear models. Recently a general way to solve the
previous min f + g problem is through proximal convex optimization [4]. As we
discuss in Section 2, we with the observation that for any μ > 0, the optimum w∗

of f + g verifies w∗ = proxμg(w
∗−μ∇f(w∗)) where proxh denotes the proximal

operator associated with h. This fixed point property immediately suggests an
iterative procedure. For the Lasso problem this has been done in a number of
papers and has led to the Iterative Shrinkage/Thresholding Algorithm (ISTA),
improved in [5] to the FISTA (Fast ISTA) algorithm for solving min f + g for a
general g. However, in order for it to be efficient, the proximal operator proxμg
has to be easily computable.

The iterative structure of ISTA and FISTA suggests that, in principle, they
can be applied to other problems. A natural idea is to use it to derive sparse
Multilayer Perceptrons (MLPs), either in their standard, one hidden layer form
or for deeper, many layer networks. Usual weight decay MLP regularization is
performed by adding the l2 squared norm of the weights ‖w‖22 =

∑
w2
j to the

objective function. Looking towards sparse MLPs, the l2-penalty could be either
complemented with the l1-norm, resulting in an MLP variant of the Elastic Net

655

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

problem, or simply replaced by the l1-norm, as we will do here. However, while
one could apply the l1 norm to all weights, some care is needed. First, the FISTA
criterion function must be convex but the standard MSE for MLPs is so only
locally near minima. Moreover, sparsity at one layer enforces sparsity also at
the previous one: if all the output weights from unit j at layer h are zero, all
the input weights to that unit from layer h− 1 can be also set to zero. In other
words, enforcing sparsity at one layer might cascade to the previous ones.

To simplify, we will consider in this exploratory work one hidden layer net-
works with a single output unit. We denote by WH the input to hidden layer
weights and by WO the weights connecting the hidden layer to the single output
unit. To ensure FISTA convergence, we will train separately the output and the
hidden weights in a two step approach described in Section 3, applying the l1-
penalty only to the output weights WO. Our overall goal is to analyze whether
it is possible to train efficiently sparse MLPs (sMLPs) that yield effective mod-
els; sMLP training complexity is considered also in Section 3. In Section 4 we
will build and compare standard and sparse MLP models performance in several
classification and regression problems. We end the paper with a short discussion
in Section 5, where we summarize our findings here and consider ways to further
explore the application of sparse proximal optimization to MLPs.

2 Proximal Optimization Review

Assume we want to minimize a sum f + g of a convex differentiable function f
and a convex non differentiable one g. By the Moreau–Rockafellar theorem [6],
w∗ will be a minimum of f+g iff 0 ∈ ∇f(w∗)+∂g(w∗) where ∂h(w) denotes the
subdifferential operator. Thus, for any γ > 0, we have −γ∇f(w∗) ∈ γ∂g(w∗)
and, also, w∗ − γ∇f(w∗) ∈ (I + γ∂g)(w∗). This implies that the set-valued
function (I + γ∂g)−1 verifies w∗ ∈ (I + γ∂g)−1 (w∗ − γ∇f(w∗)). Now, the
proximal operator at w of a convex, lower semicontinuous function F with step
γ > 0 is defined as

y = proxγF (w) = argmin
z

{
1

2
‖z−w‖22 + γF (z)

}
.

It follows that 0 ∈ y − w + γ∂F (y) and, hence, y ∈ (I + ∂F)−1(w). It can
be shown [6] that ∂F is a monotone operator and this implies that the value
of (I + ∂F)−1 is unique and it defines a function that verifies proxγF (w) =
y = (I + ∂F)−1(w). As a consequence, w∗ = proxγg(w

∗ − γ∇f(w∗)), which
immediately suggests an iterative algorithm of the form

wk+1 = proxγg(wk − γ∇f(wk)). (1)

The previous equation is the basic principle behind the well known proximal
gradient method [4] and also ISTA/FISTA. The latter combines equation (1)
with γ = 1/L and the momentum step

yk+1 = wk +
tk − 1

tk+1
(wk −wk−1),

656

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 1: Batch Conjugate Gradient and FISTA MLP training

Input: Sample (X,y) and FISTA parameter λ1
Initialize k = 0, W0 = (WH

0 ,W
O
0)

while stopping condition == false do

WH
k+1 = Conjugate Gradient

(
E
[∥∥y − F (X;WH

k ,W
O
k

)∥∥2
2

])
H = σ(WH

k+1X
t)

WO
k+1 = FISTA

(
E
[∥∥y −HtWO

k

∥∥2
2

]
+ λ1‖WO

k ‖1
)

end

where tk+1 = 1
2 (1 +

√
1 + 4t2k) and L a Lipschitz constant for ∇f . Observe

that for FISTA to be efficient we need a simple computation of the proximal
operator at the current wk. In the case of the l1-norm, we have g(w) = ‖w‖1
and [proxγg(w)]i = sign(wi)(|wi| − γ)+. For a D-dimensional w, this simply
adds an O(D) cost to the ∇f computation.

3 Sparse One Hidden Layer MLPs

Recall that we are considering here one hidden layer MLPs with linear output
weights. The overall criterion function is therefore

J(W) = J
(
WH ,WO

)
= E

[∥∥y − F (X; WH ,WO
)∥∥2

2

]
+ λ1‖WO‖1, (2)

where F is the MLP transfer function. This choice forces us to split the training
of the WO and WH weights in a two step procedure, where we alternate FISTA
optimization on the WO weights and unconstrained optimization on the WH .

More precisely, we consider alternatively J(W) first as a function J1
(
WO

)
of WO, with WH fixed at a given W

H
, namely,

J1
(
WO

)
= J

(
W

H
,WO

)
= E

[∥∥∥y − F (X; W
H
,WO

)∥∥∥2
2

]
+ λ1‖WO‖1, (3)

that we optimize by FISTA. Then we fix WO at a given W
O

and consider now
the J2 function J2

(
WH

)

J2
(
WH

)
= E

[∥∥∥y − F (X; WH ,W
O
)∥∥∥2

2

]
= J

(
WH ,W

O
)
− λ1‖WO‖1, (4)

which we will optimize on WH using the Conjugate Gradient (CG) method [7].
Now, if (WH

k ,W
O
k) are the weights at step k and we apply successively the

FISTA and CG steps to the functions Jk1 (W
O) and Jk2 (W

H), where we fix WH
k

and WO
k+1 respectively, it follows that

657

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

J(WH
k+1,W

O
k+1) = J2(W

H
k+1) + λ1‖WO

k+1‖
≤ J2(W

H
k) + λ1‖WO

k+1‖ = J1(W
O
k+1)

≤ J1(W
O
k) = J(WH

k ,W
O
k);

i.e., the overall criterion J decreases monotonically. The previous procedure will
minimize the error no matter the order in which FISTA and CG are applied,
so we can start with any of them. Notice also that the individual FISTA steps
are not monotonic; thus FISTA has to converge to ensure minimization of J1
and, hence, the overall monotonicity. An outline of the procedure is given in
Algorithm 1.

We briefly discuss the algorithm’s complexity. Let N be the number of
sample patterns, H the number of hidden units and D pattern dimension. First,
standard MLP complexity is dominated by the ∇J computation, which has a
cost O(NH) for the WO gradient and O(NHD) for the WH one. We will train
standard MLPs by the Conjugate Gradient (CG) method, that adds a O(DH +
H) cost to the previous one and, more importantly, several computations of J ,
with a cost of O(NDH+NH) each, since the Numerical Recipes implementation
we use computes several line minimizations of J . We can thus summarize the
cost of CG over J as nICG × O(NDH + NH), where nICG is the number of
global CG iterations needed. A similar analysis applies to the CG minimization
of J2 in Algorithm 1 that has a cost nIsCG × O(NDH), where nIsCG is now the
total number of iterations performed by the outer loop in Algorithm 1. To this,
the FISTA optimization of J1 adds the cost O(NH) of the WO gradient plus the
cost of the J1 computations required by its backtracking version, with a cost of
O(NH) per iteration. Thus, FISTA total cost is nIsF ×O(NH), where nIsF is the
total number of FISTA iterations. We should expect nICG � nIsCG � nIsF and,
hence, the cost of our sMLP algorithm to be comparable to that of standard CG
MLP training.

4 Numerical Experiments

In this section we will illustrate sparse MLP training and compare their accu-
racy with those of similar l2-regularized MLPs. To do so we will work with
five datasets taken from the UCI [8] and Delve1 repositories: housing (HOU),
computer hardware (CPU), car fuel consumption (MPG), Pima Indians diabetes
(PIM) and Australian credit card approval (AUS). The number of patterns and
attributes are given in table 1. The optimal weight decay parameter λ2 and
the optimal number of hidden units for the l2-MLP models are determined by
a search over a bidimensional grid. For each grid point the generalization error
is estimated by 5-fold cross-validation and the parameters with the lowest error
are selected. We find the optimal λ1 for the sparse MLP in a similar way. Al-
though the number of values tested for the parameters λ1 and λ2 is the same, the

1http://www.cs.toronto.edu/~delve/data/datasets.html

658

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

http://www.cs.toronto.edu/~delve/data/datasets.html

first and last values are 10 times bigger in the λ1 case. This is done to roughly
balance the sparse MLP penalty, that only applies to output weights, with the
l2 standard MLP penalty, that applies to both hidden and output weights. As
mentioned before, standard MLP training is performed using the CG imple-
mentation in [7], iterating until convergence. Sparse MLPs are trained using
Algorithm 1. At each step of the main loop the CG and FISTA components
are iterated until convergence and loop iterations stop when the change in the
objective function F = f+g is less than a certain tolerance, that we set to 10−9.

Table 1: Number of patterns and attributes.
Dataset Patterns Attributes Type
HOU 506 14 Regression
CPU 8192 12 Regression
MPG 392 8 Regression
PIM 768 8 Classification
AUS 690 14 Classification

Training results are summarized in Table 2. For each dataset we compute
the mean absolute errors (MAE) in the regression datasets and the accuracies
(Acc) in the classification datasets. Figures shown in the table are the average
of 100 independent train/test runs, together with their respective standard de-
viations. For sparse MLPs (l1-MLP) we also give the number of active hidden
units (nAHU), that is, the number of hidden-to-output weights different from 0
that determine the l1–MLP sparsity.

Table 2: l2 and l1 MLP results for batch training.

Dataset
l2-MLP MAE/Acc l1-MLP MAE/Acc

l1-MLP nAHU
Mean Sd Mean Sd

HOU 0.2456 0.0242 0.2575 0.0257 15
CPU 0.1170 0.0018 0.1086 0.0019 19
MPG 0.2494 0.0203 0.2740 0.0239 11
PIM 74.73 3.33 74.90 2.78 3
AUS 85.37 2.53 85.49 2.50 3

These results show that it is possible to train sparse MLPs with competitive
results since its performance is similar to those of standard MLPs. However, we
do not aim to find the best possible models or for sparse MLPs to outperform
standard ones.

5 Discussion and Conclusions

In this paper we show one possible way to train l1-regularized MLPs with the
same theoretical complexity of weight decay MLPs. In addition, experiments
demonstrate that both perform similar in terms of the MAE/accuracy. This
suggests that sparse MLPs may deserve further attention. For instance, they

659

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

perform a type of automatic architecture selection, since the choice of the l1
penalty parameter λ1 ultimately determines the number of non-zero output
weights and, hence, the effective number of hidden units. By using them we
may avoid having to explore different hidden unit values when looking for op-
timal MLPs. In addition, this could be exploited in a more systematic way to
derive a new approach to select MLP architecture, by applying the regularization
path for the sparse WO weights, similarly to what is done for the Lasso in [9].
Feature selection for MLPs is another natural application of sparsity enforcing
proximal optimization, which can be done either for individual input variables
or by feature groups using group variants of the Lasso. These variants can also
be solved using proximal optimization. Note that this would require to penalize
input to hidden unit weights with an sparse norm and, hence, to extend the
approach here to that setting. If successful, this would open the possibility to
apply these ideas to automatically compute sparse architectures in deeper, many
layered perceptrons. We are currently studying these and similar issues.

References

[1] Ian Goodfellow, Aaron Courville, and Yoshua Bengio. Large-scale feature learning with
spike-and-slab sparse coding. In ICML, 2012.

[2] Daniel Hernández-Lobato, José Miguel Hernández-Lobato, and Pierre Dupont. Generalized
spike-and-slab priors for bayesian group feature selection using expectation propagation.
Journal of Machine Learning Research, 14:1891–1945, 2013.

[3] Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal
Statistical Society and Series B, 58:267–288, 1994.

[4] Patrick L. Combettes and Jean-Christophe Pesquet. Proximal Splitting Methods in Signal
Processing. ArXiv e-prints, December 2009.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Img. Sci., 2(1):183–202, March 2009.

[6] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University
Press, 3 edition, September 2007.

[8] Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013.

[9] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. Regularization Paths for Gener-
alized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1):1–22,
2 2010.

660

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

