
Augmented Hashing for Semi-Supervised
Scenarios

Zalán Bodó and Lehel Csató ∗

Babeş–Bolyai University - Faculty of Mathematics and Computer Science
Kogălniceanu 1., 400084 Cluj-Napoca - Romania

Abstract. Hashing methods for fast approximate nearest-neighbor
search are getting more and more attention with the excessive growth of
the available data today. Embedding the points into the Hamming space
is an important question of the hashing process. Analogously to machine
learning there exist unsupervised, supervised and semi-supervised hash-
ing methods. In this paper we propose a generic procedure to extend
unsupervised codeword generators using error correcting codes and semi-
supervised classifiers. To show the effectiveness of the method we combine
linear spectral hashing and two semi-supervised algorithms in the experi-
ments.

1 Introduction

Learned binary embeddings for large data sets, where approximate nearest-
neighbors (ANN) of a given point needed to be found, are efficient tools for
indexing these sets. The embeddings are designed to approximately preserve sim-
ilarity in the embedding Hamming space. The beneficial properties of these code-
words lead to efficient Hamming distance computations for finding the nearest-
neighbors.

We differentiate between two problems of ANN search with binary embed-
dings: the first one consists of generating the binary codes, and the second one
is the actual searching process [5]. In this paper we address the first problem.

One can distinguish between unsupervised, supervised and semi-supervised
codeword generations, based on the information they use to obtain the embed-
ding [5]. Unsupervised methods use only the information carried by the points
themselves. Supervised methods use additional information in form of labels as
in a supervised machine learning problem, as well as neighborhood lists or paired
constraints. Finally, semi-supervised methods can be viewed as a mixture of the
above approaches.

In this paper we propose a general framework for augmenting hash code-
words obtained by unsupervised techniques. We assume that we are given some
class labels for the training data, thus creating a semi-supervised learning sce-
nario. We propose to extend the codewords using error correcting output coding
(ECOC) [4] with semi-supervised classifiers.

∗The authors acknowledge the support of the Romanian Ministry of Education and Research
via grant PN-II-RU-TE-2011-3-0278.

53

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

The paper is structured as follows: Sec. 2 describes and presents the main
idea of the paper of augmenting the hash codewords obtained by an unsuper-
vised hashing method when label information is available. Sec. 3 presents linear
spectral hashing [2], an unsupervised hashing technique, that generates a set of
input space hyperplanes, as well as semi-supervised least squares and support
vector machines. These methods were chosen to show the effectiveness of the
codeword extension in practice. Sec. 4 presents the experiments and discusses
the results.

2 Augmenting the codewords

In unsupervised hashing methods supervision information (e.g. class labels) is
not used when generating the codewords. In this section we propose a generic
procedure to extend the codewords generated by an unsupervised method when
label information is available. The method is generic because the semi-supervised
learning algorithm applied in it can be chosen arbitrarily. Similarly, the base
codeword generation method can also be an arbitrary unsupervised technique.

The main idea is simple: form a data-dependent error correcting output
coding matrix, based on which train semi-supervised classifiers that will generate
the second part of the hash code. A coding matrix is a k× s matrix defined over
the set {−1, 1}, where k denotes the number of classes and s is the codeword
length. For each column of the coding matrix a binary classifier is trained,
splitting the training data into two sets – of positive and negative examples –
based on the actual column.1 In hashing we use the trained classifiers to obtain
a better hash codeword.

We know that an error correcting code can detect dmin − 1 errors and can
correct

⌊
dmin−1

2

⌋
errors, where dmin is the minimum Hamming distance [3].

2.1 Error correcting codes

The most popular technique for multi-class supervised learning with binary clas-
sifiers is the one-versus-rest approach. This technique needs k classifiers (k
denoting the number of classes), each of which is trained choosing a different
positive class, while the rest of the training points are considered to constitute
the negative class. The one-vs-rest scheme has a minimum codeword distance
dmin = 2, therefore it can detect one error but has no correcting capability.

A very similar but more beneficial scheme is two-versus-rest. Here all two-
class combinations are taken and the members of the selected class pair are taken
as positive examples, whilst the points of the remaining classes are the negative
examples. In this case dmin = 2(k − 2), therefore k − 3 errors can be corrected.

1Error correcting output coding is used in machine learning to perform multi-class classifi-
cation using binary classifiers. At prediction each of the s classifiers output a sign, the closest
codeword to the resulting vector is looked up in the coding matrix, and the resulting class is
output as the decision.

54

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

For k = 4 classes the coding matrix becomes

M =

⎡
⎢⎢⎣

1 1 1 −1 −1 −1
1 −1 −1 1 1 −1
−1 1 −1 1 −1 1
−1 −1 1 −1 1 1

⎤
⎥⎥⎦

A good error correcting code is characterized by row and column separation.
Well-separated rows are needed to provide a code with profitable correcting
properties – this affects the minimum Hamming distance. Column separation
means uncorrelated columns, thus preventing to train redundant classifiers.

To accomplish row and column separation, one approach is to define an
optimization problem for finding such codes. We choose the codewords such
that the codeword distances be proportional to class similarities. If c1, c2, . . . , ck
denote the codewords, we can write the optimization problem as follows [9]:

min
C∈Rk×s

k∑
i,j=1

aij‖ci − cj‖2 (= tr (C′LC)) (1)

s.t. C′1 = 0, C′C = I

where s denotes the codeword length, and we already relaxed the codewords
to real valued vectors. L = D − A denotes the Laplacian, where A contains
the pairwise class similarities and D = diag(A1) is the degree matrix. The
constraints are introduced to give a balanced and uncorrelated coding matrix.
The solution is given by the s eigenvectors of the Laplacian, starting with the
eigenvector corresponding to the second smallest positive eigenvalue.

An important question is how to calculate class similarities. One – and prob-
ably the most simple – solution is to compute the class centers and use dot prod-
ucts to compute the similarities. Another approach uses support vector machines
(SVM) [9]: the inverse of the margin of the separating hyperplane is used as class
similarity – this will reflect how well-separated the classes are. In order to achieve
this, k(k − 1)/2 classifiers are built, one for each class pair. Then the similarity

between two classes is given by ‖w‖2 =
∑�
i,j=1 αiαjyiyjk(xi,xj), where w is the

normal of the resulting hyperplane, αi, i = 1, 2, . . . , � are the Lagrange multipli-
ers from the Wolfe dual of the optimization problem and k(x, z) = φ(x)′φ(z) is
the kernel function. This induces a valid positive similarity measure, by which
the Laplacian will be positive semi-definite [7].

3 Linear spectral hashing and Laplacian regularized least
squares

This section briefly presents linear spectral hashing for hash codeword generation
and two linear semi-supervised learning methods. We have chosen linear spectral
hashing because it is linear and the optimization problem to be solved is the same
as the problem of finding the optimal coding matrix. The methods can be simply
combined by taking the union of the two sets of output vectors.

55

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

3.1 Linear spectral hashing codewords

Linear spectral hashing was proposed in [2] being a linear variant of spectral
hashing [8]. The optimization problem of spectral hashing is written as

min
B∈RN×r

tr(B′LB)

s.t. B′1 = 0, B′B = I

where r denotes the length of the codeword, B contains the codewords b′
i in

its rows and L = D − A is the Laplacian.2 The first condition is for main-
taining the balance between the bits – bits are distributed evenly over {−1, 1}
– and the second one makes the bits uncorrelated. The solution is given by
B∗ = [v2, v3, . . . , vr+1] where v2 denotes the eigenvector corresponding to the
second smallest positive eigenvalue. In its original formulation, using the Gaus-
sian kernel, generalization was done using the eigenfunctions of the weighted
Laplace–Beltrami operators, assuming a multidimensional uniform distribution.

Linear spectral hashing – for cases when dot product offer a good similarity
measure – proposes a simple and elegant way to compute the codewords for
previously unseen points based on normalized cuts. The algorithm reduces to
finding the first r eigenvectors {u2, u3, . . . , ur+1} of XD−1X′, starting with
the second largest eigenvalue, where X denotes the training data set (training in-
stances are put in the columns of X). The codeword of a point is then computed
as

[x′u2,x
′u3, . . . ,x

′ur+1]
′

3.2 Semi-supervised learning with Laplacian regularized least
squares and semi-supervised SVMs

Laplacian regularized least squares [1] are hyperplane-based regression classifiers
for semi-supervised learning, minimizing the error between the hyperplane pro-
jections and the known labels, whilst the regularization tag imposes smoothness
conditions on the solutions. If W contains the normal vectors wi, i = 1, 2, . . . , s
of the separating hyperplanes in its columns, then the optimization problem of
linear LapRLS can be written as:

min
W

α

N2

N∑
i,j=1

ai,j ‖W′xi −W′xj‖2 + β

�

�∑
i=1

‖W′xi − yi‖2 + γ‖W‖2F

where α and β are the parameters setting the influence of the squared loss and
the smoothness penalty, and γ is a regularization parameter. The matrix W is
of size d × s, and yi denotes the codeword assigned to the class of xi by the
methods presented in Sec. 2.

2The matrices A, D and L denote the same similarity, degree and Laplacian matrix as in
Sec. 2.1, but they are defined over different data.

56

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

8 16 32 63
0

0.1

0.2

0.3

0.4

Codeword length

A
re

a
un

de
r

r−
p

cu
rv

e

OptDigits

LSH
LSH+1vr
LSH+2vr
LSH+opt1
LSH+opt2
LSH+opt3

32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

0.3

Codeword length

A
re

a
un

de
r

r−
p

cu
rv

e

20Newsgroups

LSH
LSH+Rand30
LSH+TSVM30

(a) (b)

Fig. 1: Area under the precision–recall curve for various code lengths: (a) Opt-
Digits, (b) 20Newsgroups data set.

Semi-supervised SVMs appends an additional term to the objective function
of the SVM to drive the separating hyperplane towards low density regions:

min
w,{yj}Nj=�+1

λ

2
‖w‖2 + 1

2�

�∑
i=1

l(yiw
′xi) +

λ′

2u

N∑
j=�+1

l(yjw
′xj)

s.t.
1

u

N∑
j=�+1

max (0, sgn(w′xj)) = t

where l is the loss function, λ′ controls the influence of the unlabeled points
and t is the fraction of the unlabeled data required to be positive. We used the
Modified Finite Newton Linear L2-SVM implementation [6]3, where the squared
hinge loss is used, l(z) = l2(z) = max(0, 1− z)2. For every column of the coding
matrix a semi-supervised SVM is built and the corresponding binary label will
be given by sgn(w′x).

4 Experimental results

The experiments were performed on OptDigits4, a handwritten digit recogni-
tion database, and the 20Newsgroups data set5 of newswire articles and news-
group documents. In OptDigits the training (3823) and test examples (1797)
are distributed approximately equally among the 10 classes. To create a semi-
supervised scenario, we used the labels of only the first 2000 digits from the
training set. The 20Newsgroups data set (20 classes, 11314 training and 7532
test documents) was processed as described in [2]. We randomly sampled 10

3SVMlin, http://vikas.sindhwani.org/svmlin.html
4Optical Recognition of Handwritten Digits Data Set, http://archive.ics.uci.edu/ml/

datasets/Optical+Recognition+of+Handwritten+Digits
5http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz

57

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

documents (with replacement) from each class to form the labeled documents,
the rest was used as the unlabeled training set.

In Fig. 1 the areas under recall-precision curves are shown. Precision and re-
call (using 50 nearest neighbors) were calculated as the function of the Hamming
neighborhood, and the number of evaluations was determined by the length of
the codeword. In Fig. 1(a) the following results are shown: LSH – linear spec-
tral hashing, LSH+1vr – LSH with one-vs-rest scheme, LSH+2vr – LSH with
two-vs-rest scheme, LSH+opt1 – LSH with optimized coding matrix using class
centroids to calculate class similarity, LSH+opt2 – LSH with optimized cod-
ing matrix using linear SVM, LSH+opt3 – LSH with optimized coding matrix
using Gaussian SVM. Similarity in LapRLS was calculated using dot products
and the normalized Laplacian was used; parameters α and β of LapRLS were
set to 1 and q to 10−4. When using optimized coding matrices the normalized
Laplacian was used in Eq. (1) and s was set to 64. In LSH+opt3 the parameter
σ of the Gaussian kernel k(x, z) = exp

(−σ‖x− z‖2) was chosen to be 10−3.
Fig. 1(b) compares linear spectral hashing (LSH) with its augmented variants
using 30 randomly chosen hyperplanes (LSH+Rand30) and 30 semi-supervised
SVM classifiers (LSH+TSVM30). The coding matrix for semi-supervised SVMs
was generated by uniform random class assignment, and the parameters were
set as λ = 0.01, λ′ = 1 and t = 0.5.

The results show that the augmented codewords outperform the unsupervised
codes. It was interesting to note the results of the two-vs-rest scheme. Using
optimized coding matrices, however, has the benefit to choose a manageable
codeword length when many classes are present. Nonetheless, optimization of
the coding matrix is possible only if a larger number of labeled examples are
available. Using a semi-supervised method with only a few labeled samples can
lead to a costly process with minor improvements over random hyperplanes.

References

[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. J. of Machine Learning
Research, 7:2399–2434, 2006.

[2] Zalán Bodó and Lehel Csató. Linear spectral hashing. In ESANN, pages 303–308, 2013.

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Intersci-
ence, second edition, 2006.

[4] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. J. of Artificial Intelligence Research, 2:263–286, 1995.

[5] Kristen Grauman and Rob Fergus. Learning binary hash codes for large-scale image search.
Machine Learning for Computer Vision, 411:49–87, 2013.

[6] Vikas Sindhwani and S. Sathiya Keerthi. Large scale semi-supervised linear SVMs. In
SIGIR, pages 477–484. ACM, 2006.

[7] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

[8] Yair Weiss, Antonio B. Torralba, and Robert Fergus. Spectral hashing. In NIPS, pages
1753–1760. MIT Press, 2008.

[9] Xiao Zhang, Lin Liang, and Heung-Yeung Shum. Spectral error correcting output codes
for efficient multiclass recognition. In ICCV, pages 1111–1118. IEEE, 2009.

58

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

