Reweighted l_1 Dual Averaging Approach for Sparse Stochastic Learning

Vilen Jumutc and Johan A.K. Suykens

KU Leuven, Department of Electrical Engineering, ESAT-STADIUS Kasteelpark Arenberg 10, B-3001, Leuven, Belgium

Abstract. Recent advances in stochastic optimization and regularized dual averaging approaches revealed a substantial interest for a simple and scalable stochastic method which is tailored to some more specific needs. Among the latest one can find sparse signal recovery and l_0 -based sparsity inducing approaches. These methods in particular can force many components of the solution shrink to zero thus clarifying the importance of the features and simplifying the evaluation. In this paper we concentrate on enhancing sparsity of the recently proposed l_1 Regularized Dual Averaging (RDA) method with a simple reweighting iterative procedure which in a limit applies the l_0 -norm penalty. We present some theoretical justifications of a bounded regret for a sequence of convex repeated games where every game stands for a separate reweighted l_1 -RDA problem. Numerical results show an enhanced sparsity of the proposed approach and some improvements over the l_1 -RDA method in generalization error.

1 Introduction

Numerous results and publications on stochastic learning revealed a substantial interest for extending learning paradigms in stochastic optimization with different notions of sparsity (parsimony) inducing norms [1, 2] and outlier-ablating loss functions [3]. In retrospect we can see an increasing importance of correct sparsity patterns and proliferation of soft-thresholding methods [1, 4] in achieving a good and approximately sparse solution. There are many important contributions of the parsimony concept to the machine learning field, e.g. enhanced interpretability of a solution or simplified and easy to compute linear models. Although methods, such as Lasso and Elastic Net, were investigated in the context of stochastic optimization in many papers [1, 4] we are not aware of any l_0 -penalty inducing approaches which were applied in this particular setting.

Recently Candès et al. [5] proposed an approximation to the l_0 -norm through an iteratively reweighted l_1 minimization. In this paper we intend to close the gap and introduce a novel view on enhancing sparsity of stochastic models through a sequence of convex repeated games [6]. In this general setting we assume a composite optimization objective of the form $\phi_t(w) \triangleq \mathbb{E}_{\xi}[F(w,\xi)] + \lambda \psi_t(w)$, where $\xi = (x, y)$ is a random pair (input-output observation) drawn from an unknown underlying distribution and both $f_t(w) \triangleq \mathbb{E}_{\xi}[F(w,\xi)]$ and $\psi_t(w)$ are related to some convex but possibly non-smooth functions. The solution of every optimization problem in our approach is treated as a hypothesis of a learner at iteration t induced by a loss function $f_t(w) \triangleq \mathbb{E}_{\mathcal{A}_t}[l(w; \mathcal{A}_t)]$ on a particular question-answer subset $\mathcal{A}_t \in \mathcal{S}, |\mathcal{A}_t| = k$ of pairs $\{(x_{1t}, y_{1t}), \ldots, (x_{kt}, y_{kt})\}$ and regularized by a reweighted function $\psi_t(w) \equiv \psi_t(w; \Theta_t)$, where Θ_t is our diagonal reweighting matrix at iteration t. In the sequel we extend the recent work of Xiao [4] on l_1 -Regularized Deal Averaging (RDA) and present some theoretical regret bounds for learning sparser model representations through a reweighted iterative l_1 -minimization.

This paper is structured as follows. Section 2 describes our re-weighted stochastic l_1 -RDA method. Section 3 gives an upper bound on a regret of the sequence of convex repeated games. Section 4 presents our numerical results while Section 5 concludes the paper.

2 Method

2.1 Problem definition

In the stochastic l_1 -RDA approach developed by Xiao [4] we are approximating the expected loss function $f_t(w)$ by using a finite set of independent observations ξ_1, \ldots, ξ_T , and we are minimizing the following optimization objective:

$$\min_{w} \frac{1}{T} \sum_{t=1}^{T} f_t(w, \xi_t) + \Psi(w).$$
(1)

We are dealing with the l_1 -norm and $\Psi(w) \triangleq \lambda ||w||_1$, where λ is a trade-off constant. In our particular approach we will replace it with the re-weighted version $\Psi_t(w) \triangleq \lambda \psi_t(w; \Theta_t) = \lambda ||\Theta_t w||_1$ which in the limit applies an approximation to the l_0 -norm penalty. At every iteration t we will be solving a separate convex instantaneous optimization problem (game) conditioned on a diagonal reweighting matrix Θ_t .

According to a simple dual averaging scheme [7] and intuition given by [4] we can approach our primal solution using the following sequence of iterates w_{t+1} :

$$w_{t+1} = \arg\min_{w} \{ \frac{1}{t} \sum_{\tau=1}^{t} \langle g_{\tau}, w \rangle + \Psi_t(w) + \frac{\beta_t}{t} h(w) \},$$
(2)

where h(w) is an auxiliary σ -strongly convex smoothing term, $g_t \in \partial f_t(w_t)$ represents a subgradient, and $\{\beta_t\}_{t\geq 1}$ is a non-negative and non-decreasing input sequence, which determines the convergence properties of the algorithm. For our re-weighted l_1 -regularized dual averaging approach we set $\beta_t = \gamma \sqrt{t}$ and we replace h(w) with a parameterized version:

$$h(w) = \frac{1}{2} \|w\|_2^2 + \rho \|w\|_1,$$
(3)

where the initial parameters of the enhanced l_1 -RDA method in [4] remain unchanged. Hence Eq.(2) becomes:

$$w_{t+1} = \arg\min_{w} \{ \frac{1}{t} \sum_{\tau=1}^{t} \langle g_{\tau}, w \rangle + \lambda \| \Theta_{t} w \|_{1} + \frac{\gamma}{\sqrt{t}} (\frac{1}{2} \| w \|_{2}^{2} + \rho \| w \|_{1}) \}.$$
(4)

Each iterate has a closed form solution. Let us define $\eta_t^{(i)} = \Theta_t^{(ii)} \lambda + \gamma \rho / \sqrt{t}$ and give an entry-wise solution by:

$$w_{t+1}^{(i)} = \begin{cases} 0, & \text{if } |\hat{g}_t^{(i)}| \le \eta_t^{(i)} \\ -\frac{\sqrt{t}}{\gamma} (\hat{g}_t^{(i)} - \eta_t^{(i)} \operatorname{sign}(\hat{g}_t^{(i)})), & \text{otherwise} \end{cases},$$
(5)

where $\hat{g}_t^{(i)} = \frac{t-1}{t}\hat{g}_{t-1}^{(i)} + \frac{1}{t}g_t^{(i)}$ is the *i*-th component of the averaged $g_t \in \partial f_t(w_t)$.

2.2 Algorithm

In this subsection we will outline our main algorithmic scheme. It consists of a simple initialization step, computation and averaging of the subgradient g_t , evaluation of the iterate w_{t+1} and finally re-computation of the reweighting matrix Θ_{t+1} .

Algorithm 1: Stochastic Reweighted l_1 -Regularized Dual Averaging

Data: $S, \lambda > 0, \gamma > 0, \rho \ge 0, \epsilon > 0, T > 1, k \ge 1, \varepsilon > 0$ 1 Set $w_1 = 0, \hat{g}_0 = 0, \Theta_1 = diag([1, ..., 1])$ 2 for $t = 1 \rightarrow T$ do Select $\mathcal{A}_t \subseteq \mathcal{S}$, where $|\mathcal{A}_t| = k$ 3 Calculate $g_t \in \partial f_t(w_t; \mathcal{A}_t)$ $\mathbf{4}$ Compute the dual average $\hat{g}_t = \frac{t-1}{t}\hat{g}_{t-1} + \frac{1}{t}g_t$ Compute the next iterate w_{t+1} by Eq.(5) 5 6 Re-calculate the next Θ by $\Theta_{t+1}^{(ii)} = 1/(|w_{t+1}^{(i)}| + \epsilon)$ 7 if $||w_{t+1} - w_t|| \le \varepsilon$ then 8 9 return w_{t+1} \mathbf{end} 10 11 end 12 return w_{T+1}

From Algorithm 1 we can clearly see that it can operate in a stochastic (k = 1) and semi-stochastic mode (k > 1). We do not restrict ourselves to a particular choice of the loss function $f_t(w)$. In comparison with the l_1 -RDA approach we have one additional input parameter ϵ , which should be tuned or selected properly as described in [5].

3 Analysis

In this section we will briefly¹ discuss some of our convergence results and upper bounds for Algorithm 1. We concentrate mainly on the regret w.r.t. function $\phi_{\tau}(w)$, such that for all $w \in \mathbb{R}^n$ we have:

$$R_t(w) = \sum_{\tau=1}^t (\phi_\tau(w_\tau) - \phi_\tau(w)).$$
 (6)

¹due to the space limitations

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

From [7] and [4] we know that if we consider $\Delta \psi_{\tau} = \psi_{\tau}(w_{\tau}) - \psi_{\tau}(w)$ the following gap sequence δ_t holds:

$$\delta_t = \max_{w} \{ \sum_{\tau=1}^{t} (\langle g_{\tau}, w_{\tau} - w \rangle + \Delta \psi_{\tau}) \} \ge \sum_{\tau=1}^{t} (f_{\tau}(w_{\tau}) - f_{\tau}(w) + \Delta \psi_{\tau}) = R_t(w)$$
(7)

which due to the convexity of f_{τ} bounds the regret function from above [8]. Hence by ensuring the necessary condition of Eq.(49) in [4] we can show the upper bound on δ_t which immediately implies the same bound on $R_t(w)$.

Theorem 1 Let the sequences $\{w_t\}_{t\geq 1}$, $\{g_t\}_{t\geq 1}$ and $\{\Theta_t\}_{t\geq 1}$ be generated by the Algorithm 1. Assume $\|\Theta_{t+1}w\|_1 \geq \|\Theta_tw\|_1$ for any $w \in \mathbb{R}^n$, $\psi_{t+1}(w_{t+1}) \leq \psi_t(w_t)$, $\|g_t\|_* \leq G$ and $h(w_t) \leq D$, where $\|\cdot\|_*$ stands for the dual norm. Then:

$$R_t(w) \le (\gamma D + \frac{G^2}{\gamma})\sqrt{t}.$$
(8)

Proof: We start with redefining a conjugate-type functions $V_t(s)$ and $U_t(s)$ in [4] and replacing $\Psi(w)$ in each of them with our reweighted l_1 function $\lambda \|\Theta_1 x\|_1$. In Eq.(7) we can separate and bound the maximization part:

$$\max_{w} \{ \sum_{\tau=1}^{t} (\langle g_{\tau}, w_{0} - w \rangle - \psi_{\tau}(w)) \} \le \max_{w} \{ \sum_{\tau=1}^{t} \langle g_{\tau}, w_{0} - w \rangle - t\psi_{1}(w) \}, \quad (9)$$

iff $\|\Theta_{t+1}x\|_1 \geq \|\Theta_tx\|_1$. The right hand side of Eq.(9) is exactly $U_t(s)$ in [4]. On the other hand our second assumption guarantees Eq.(49) in [4] because $V_t(-s_t) + \psi_t(w_t) \leq V_t(-s_t) + \psi_1(w_1) \leq V_{t-1}(-s_t)$. All together this guarantees the bound on δ_t sequence motivated by Eq.(2.15) in [7] and thoroughly discussed in Appendix B of [4]. This bound immediately implies Corollary 2 of [4]. \Box

Our intuition is related to the asymptotic convergence properties of an iterative reweighting procedure discussed in [9] where with each iterate of Θ_t our approximated norm becomes $\|\Theta_t w\|_1 \simeq \|w\|_p$ with $p \to 0$ thus making it closer to the l_0 -norm. In return this implies $p_{t+1} \le p_t$ and $\|w\|_{p_{t+1}} \ge \|w\|_{p_t}$. In the next theorem we will slightly relax the necessary conditions in order to derive a new bound w.r.t. the maximal discrepancy of Θ_t and $\psi_t(w_t)$ iterates.

Theorem 2 Let the sequences $\{w_t\}_{t\geq 1}$, $\{g_t\}_{t\geq 1}$ and $\{\Theta_t\}_{t\geq 1}$ be generated by the Algorithm 1. Assume $\psi_t(w) = \lambda \|\Theta_t w\|_1$, $\|\Theta_t w\|_1 - \|\Theta_{t+\tau} w\|_1 \leq \nu_1/\tau$ and $\psi_{t+\tau}(w_{t+\tau}) - \psi_t(w_t) \leq \nu_2/\tau$ for any $\tau \geq 1$, $\nu_1, \nu_2 \geq 0$, $\lambda > 0$ and $w \in \mathbb{R}^n$, $\|g_t\|_* \leq G$ and $h(w_t) \leq D$, where $\|\cdot\|_*$ stands for the dual norm. Then:

$$R_t(w) \le \log(t)(\lambda\nu_1 + \nu_2) + (\gamma D + \frac{G^2}{\gamma})\sqrt{t}.$$
(10)

Proof: The outline of the proof is the same except for the adjusted Eq.(9):

$$\max_{w} \{ \sum_{\tau=1}^{t} (\langle g_{\tau}, w_{0} - w \rangle - \psi_{\tau}(w)) \} \le \max_{w} \{ \sum_{\tau=1}^{t} (\langle g_{\tau}, w_{0} - w \rangle - (\psi_{1}(w) - \lambda \nu_{1}/\tau)) \},$$
(11)

which in return implies the additional $\lambda \nu_1 \log(t)$ term in Lemma 9 of [4]. \Box

4 Experiments

4.1 Setup

For all our experiments we are comparing linear models with the hinge loss. For tuning λ, γ, ρ hyperparameters in Algorithm 1 we used a 2-step procedure. This procedure consists of the DFO-based² global optimization technique: Randomized Direct Search (RDS) [10] and the simplex method [11] for the second step. We perform 10-fold cross-validation at each step.

All experiments with large-scale UCI datasets (Table 1) were repeated 50 times with the random split to the training and test sets in proportion 9:1. In the presence of 3 or more classes we performed binary classification where we learned to classify the first class versus all others. For Algorithm 1 we fixed parameters: T = 1000, k = 1, $\epsilon = 10^{-2}$ and $\varepsilon = 10^{-5}$.

Dataset	# of attributes	# of classes	# of data points
Pen Digits	16	10	10992
Opt Digits	64	10	5620
Semeion	256	10	1593
Spambase	57	2	4601
Magic	11	2	19020
Shuttle	9	2	58000
Skin	4	2	245057
Covertype	54	7	581012

Table 1: UCI Datasets

Dataset	$(re)l_1$ -RDA	est error l_1 -RDA	Pegasos	Sparsity \sum_{i} (re) l_1 -RDA	$I(w_i > 0)/d$ l_1 -RDA
Pen Digits	0.082	0.073	0.066	0.186	0.350
Opt Digits	0.050	0.061	0.037	0.165	0.246
Semeion	0.042	0.039	0.088	0.124	0.182
Spambase	0.116	0.160	0.099	0.321	0.412
Shuttle	0.067	0.077	0.062	0.307	0.493
Magic	0.225	0.251	0.276	0.290	0.452
Skin	0.066	0.083	0.115	0.680	0.713
Covertype	0.269	0.284	0.281	0.132	0.163

Table 2: Performance and sparsity

4.2 Results

In this subsection we present some numerical results and evaluations. As we can notice from Table 2 our proposed reweighted modification of the l_1 -RDA approach achieves better sparsity patterns on every dataset while for some of them it can even attain better generalization performance. For the sake of completeness we provide values for the l_2 -norm approach, namely Pegasos [12], which is an SGD-based stochastic optimization routine but without sparsity

²Derivative-Free Optimization

inducing capabilities. Comparing test errors of the Reweighted l_1 -RDA with other approaches for some datasets we can observe a minor degradation of the performance for attaining a sparser solution.

5 Conclusions

In this paper we considered the problem of approximating the l_0 -norm penalty in the context of linear models and sparse stochastic learning via reweighted l_1 minimization. We studied a simple dual averaging scheme for optimization which enabled us with an elegant and complementary analysis for the regret bounds. We were able to show that under certain conditions we have a bounded regret even if the convergence of our auxiliary reweighting iterate Θ_t is ill-conditioned. Numerical results demonstrate the advantages of the proposed approach both in terms of the generalization error and sparsity over the original l_1 -RDA method.

Acknowledgements: The work is supported by Research Council KUL, ERC AdG A-DATADRIVE-B, GOA/10/09MaNet, CoE EF/05/006, FWO G.0588.09, G.0377.12, SBO POM, IUAP P6/04 DYSCO.

References

- Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for 11 regularized loss minimization. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pages 929–936, New York, NY, USA, 2009. ACM.
- [2] Nicolas Le Roux, Mark W. Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In NIPS, pages 2672–2680, 2012.
- [3] Vilen Jumutc, Xiaolin Huang, and Johan A. K. Suykens. Fixed-size pegasos for hinge and pinball loss svm. In 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages 1122–1128, 2013.
- [4] Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization. J. Mach. Learn. Res., 11:2543–2596, December 2010.
- [5] Emmanuel Candès, Michael Wakin, and Stephen Boyd. Enhancing sparsity by reweighted 11 minimization. Journal of Fourier Analysis and Applications, 14(5):877–905, 2008.
- [6] Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and fenchel duality. In Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, NIPS, pages 1265–1272. MIT Press, 2006.
- [7] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221–259, 2009.
- [8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.
- [9] Kaizhu Huang, Irwin King, and Michael R. Lyu. Direct zero-norm optimization for feature selection. In *ICDM*, pages 845–850. IEEE Computer Society, 2008.
- [10] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics, Philadelphia, USA, 2009.
- [11] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308–313, 1965.
- [12] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In Proceedings of the 24th international conference on Machine learning, ICML '07, pages 807–814, New York, NY, USA, 2007.