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Abstract. Recent advances in stochastic optimization and regularized
dual averaging approaches revealed a substantial interest for a simple and
scalable stochastic method which is tailored to some more specific needs.
Among the latest one can find sparse signal recovery and l0-based sparsity
inducing approaches. These methods in particular can force many compo-
nents of the solution shrink to zero thus clarifying the importance of the
features and simplifying the evaluation. In this paper we concentrate on
enhancing sparsity of the recently proposed l1 Regularized Dual Averaging
(RDA) method with a simple reweighting iterative procedure which in a
limit applies the l0-norm penalty. We present some theoretical justifica-
tions of a bounded regret for a sequence of convex repeated games where
every game stands for a separate reweighted l1-RDA problem. Numeri-
cal results show an enhanced sparsity of the proposed approach and some
improvements over the l1-RDA method in generalization error.

1 Introduction

Numerous results and publications on stochastic learning revealed a substantial
interest for extending learning paradigms in stochastic optimization with differ-
ent notions of sparsity (parsimony) inducing norms [1, 2] and outlier-ablating
loss functions [3]. In retrospect we can see an increasing importance of cor-
rect sparsity patterns and proliferation of soft-thresholding methods [1, 4] in
achieving a good and approximately sparse solution. There are many impor-
tant contributions of the parsimony concept to the machine learning field, e.g.
enhanced interpretability of a solution or simplified and easy to compute linear
models. Although methods, such as Lasso and Elastic Net, were investigated in
the context of stochastic optimization in many papers [1, 4] we are not aware of
any l0-penalty inducing approaches which were applied in this particular setting.

Recently Candès et al. [5] proposed an approximation to the l0-norm through
an iteratively reweighted l1 minimization. In this paper we intend to close
the gap and introduce a novel view on enhancing sparsity of stochastic mod-
els through a sequence of convex repeated games [6]. In this general setting we
assume a composite optimization objective of the form φt(w) , Eξ[F (w, ξ)] +
λψt(w), where ξ = (x, y) is a random pair (input-output observation) drawn from
an unknown underlying distribution and both ft(w) , Eξ[F (w, ξ)] and ψt(w) are
related to some convex but possibly non-smooth functions. The solution of ev-
ery optimization problem in our approach is treated as a hypothesis of a learner
at iteration t induced by a loss function ft(w) , EAt

[l(w;At)] on a particular
question-answer subset At ∈ S, |At| = k of pairs {(x1t, y1t), . . . , (xkt, ykt)} and
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regularized by a reweighted function ψt(w) ≡ ψt(w; Θt), where Θt is our diago-
nal reweighting matrix at iteration t. In the sequel we extend the recent work of
Xiao [4] on l1-Regularized Deal Averaging (RDA) and present some theoretical
regret bounds for learning sparser model representations through a reweighted
iterative l1-minimization.

This paper is structured as follows. Section 2 describes our re-weighted
stochastic l1-RDA method. Section 3 gives an upper bound on a regret of the
sequence of convex repeated games. Section 4 presents our numerical results
while Section 5 concludes the paper.

2 Method

2.1 Problem definition

In the stochastic l1-RDA approach developed by Xiao [4] we are approximating
the expected loss function ft(w) by using a finite set of independent observations
ξ1, . . . , ξT , and we are minimizing the following optimization objective:

min
w

1

T

T∑

t=1

ft(w, ξt) + Ψ(w). (1)

We are dealing with the l1-norm and Ψ(w) , λ‖w‖1, where λ is a trade-off con-
stant. In our particular approach we will replace it with the re-weighted version
Ψt(w) , λψt(w; Θt) = λ‖Θtw‖1 which in the limit applies an approximation to
the l0-norm penalty. At every iteration t we will be solving a separate convex in-
stantaneous optimization problem (game) conditioned on a diagonal reweighting
matrix Θt.

According to a simple dual averaging scheme [7] and intuition given by [4] we
can approach our primal solution using the following sequence of iterates wt+1 :

wt+1 = argmin
w

{1

t

t∑

τ=1

〈gτ , w〉 + Ψt(w) +
βt

t
h(w)}, (2)

where h(w) is an auxiliary σ-strongly convex smoothing term, gt ∈ ∂ft(wt)
represents a subgradient, and {βt}t≥1 is a non-negative and non-decreasing input
sequence, which determines the convergence properties of the algorithm. For
our re-weighted l1-regularized dual averaging approach we set βt = γ

√
t and we

replace h(w) with a parameterized version:

h(w) =
1

2
‖w‖2

2 + ρ‖w‖1, (3)

where the initial parameters of the enhanced l1-RDA method in [4] remain un-
changed. Hence Eq.(2) becomes:

wt+1 = argmin
w

{1

t

t∑

τ=1

〈gτ , w〉 + λ‖Θtw‖1 +
γ√
t
(
1

2
‖w‖2

2 + ρ‖w‖1)}. (4)
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Each iterate has a closed form solution. Let us define η
(i)
t = Θ

(ii)
t λ+ γρ/

√
t and

give an entry-wise solution by:

w
(i)
t+1 =

{
0, if |ĝ(i)

t | ≤ η
(i)
t

−
√

t
γ

(ĝ
(i)
t − η

(i)
t sign(ĝ

(i)
t )), otherwise

, (5)

where ĝ
(i)
t = t−1

t
ĝ
(i)
t−1 + 1

t
g
(i)
t is the i-th component of the averaged gt ∈ ∂ft(wt).

2.2 Algorithm

In this subsection we will outline our main algorithmic scheme. It consists of
a simple initialization step, computation and averaging of the subgradient gt,
evaluation of the iterate wt+1 and finally re-computation of the reweighting
matrix Θt+1.

Algorithm 1: Stochastic Reweighted l1-Regularized Dual Averaging

Data: S, λ > 0, γ > 0, ρ ≥ 0, ǫ > 0, T > 1, k ≥ 1, ε > 0
1 Set w1 = 0, ĝ0 = 0,Θ1 = diag([1, . . . , 1])
2 for t = 1 → T do

3 Select At ⊆ S, where |At| = k
4 Calculate gt ∈ ∂ft(wt;At)

5 Compute the dual average ĝt = t−1
t
ĝt−1 + 1

t
gt

6 Compute the next iterate wt+1 by Eq.(5)

7 Re-calculate the next Θ by Θ
(ii)
t+1 = 1/(|w(i)

t+1| + ǫ)
8 if ‖wt+1 − wt‖ ≤ ε then

9 return wt+1

10 end

11 end

12 return wT+1

From Algorithm 1 we can clearly see that it can operate in a stochastic
(k = 1) and semi-stochastic mode (k > 1). We do not restrict ourselves to a
particular choice of the loss function ft(w). In comparison with the l1-RDA
approach we have one additional input parameter ǫ, which should be tuned or
selected properly as described in [5].

3 Analysis

In this section we will briefly1 discuss some of our convergence results and upper
bounds for Algorithm 1. We concentrate mainly on the regret w.r.t. function
φτ (w), such that for all w ∈ R

n we have:

Rt(w) =

t∑

τ=1

(φτ (wτ ) − φτ (w)). (6)

1due to the space limitations
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From [7] and [4] we know that if we consider ∆ψτ = ψτ (wτ )−ψτ (w) the following
gap sequence δt holds:

δt = max
w

{
t∑

τ=1

(〈gτ , wτ −w〉 +∆ψτ )} ≥
t∑

τ=1

(fτ (wτ )−fτ (w)+∆ψτ ) = Rt(w) (7)

which due to the convexity of fτ bounds the regret function from above [8].
Hence by ensuring the necessary condition of Eq.(49) in [4] we can show the
upper bound on δt which immediately implies the same bound on Rt(w).

Theorem 1 Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by

the Algorithm 1. Assume ‖Θt+1w‖1 ≥ ‖Θtw‖1 for any w ∈ R
n, ψt+1(wt+1) ≤

ψt(wt), ‖gt‖∗ ≤ G and h(wt) ≤ D, where ‖ · ‖∗ stands for the dual norm. Then:

Rt(w) ≤ (γD +
G2

γ
)
√
t. (8)

Proof: We start with redefining a conjugate-type functions Vt(s) and Ut(s) in [4]
and replacing Ψ(w) in each of them with our reweighted l1 function λ‖Θ1x‖1.
In Eq.(7) we can separate and bound the maximization part:

max
w

{
t∑

τ=1

(〈gτ , w0 − w〉 − ψτ (w))} ≤ max
w

{
t∑

τ=1

〈gτ , w0 − w〉 − tψ1(w)}, (9)

iff ‖Θt+1x‖1 ≥ ‖Θtx‖1. The right hand side of Eq.(9) is exactly Ut(s) in [4].
On the other hand our second assumption guarantees Eq.(49) in [4] because
Vt(−st) +ψt(wt) ≤ Vt(−st) +ψ1(w1) ≤ Vt−1(−st). All together this guarantees
the bound on δt sequence motivated by Eq.(2.15) in [7] and thoroughly discussed
in Appendix B of [4]. This bound immediately implies Corollary 2 of [4]. �

Our intuition is related to the asymptotic convergence properties of an iter-
ative reweighting procedure discussed in [9] where with each iterate of Θt our
approximated norm becomes ‖Θtw‖1 ≃ ‖w‖p with p → 0 thus making it closer
to the l0-norm. In return this implies pt+1 ≤ pt and ‖w‖pt+1

≥ ‖w‖pt
. In the

next theorem we will slightly relax the necessary conditions in order to derive a
new bound w.r.t. the maximal discrepancy of Θt and ψt(wt) iterates.

Theorem 2 Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by

the Algorithm 1. Assume ψt(w) = λ‖Θtw‖1 , ‖Θtw‖1 − ‖Θt+τw‖1 ≤ ν1/τ and

ψt+τ (wt+τ ) − ψt(wt) ≤ ν2/τ for any τ ≥ 1, ν1, ν2 ≥ 0, λ > 0 and w ∈ R
n,

‖gt‖∗ ≤ G and h(wt) ≤ D, where ‖ · ‖∗ stands for the dual norm. Then:

Rt(w) ≤ log(t)(λν1 + ν2) + (γD +
G2

γ
)
√
t. (10)

Proof: The outline of the proof is the same except for the adjusted Eq.(9):

max
w

{
t∑

τ=1

(〈gτ , w0 −w〉 −ψτ (w))} ≤ max
w

{
t∑

τ=1

(〈gτ , w0 −w〉 − (ψ1(w)−λν1/τ))},

(11)
which in return implies the additional λν1 log(t) term in Lemma 9 of [4]. �
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4 Experiments

4.1 Setup

For all our experiments we are comparing linear models with the hinge loss. For
tuning λ, γ, ρ hyperparameters in Algorithm 1 we used a 2-step procedure. This
procedure consists of the DFO-based2 global optimization technique: Random-
ized Direct Search (RDS) [10] and the simplex method [11] for the second step.
We perform 10-fold cross-validation at each step.

All experiments with large-scale UCI datasets (Table 1) were repeated 50
times with the random split to the training and test sets in proportion 9:1. In
the presence of 3 or more classes we performed binary classification where we
learned to classify the first class versus all others. For Algorithm 1 we fixed
parameters: T = 1000, k = 1, ǫ = 10−2 and ε = 10−5.

Table 1: UCI Datasets

Dataset # of attributes # of classes # of data points

Pen Digits 16 10 10992
Opt Digits 64 10 5620
Semeion 256 10 1593
Spambase 57 2 4601
Magic 11 2 19020
Shuttle 9 2 58000
Skin 4 2 245057
Covertype 54 7 581012

Table 2: Performance and sparsity

Dataset Test error Sparsity
P

i
I(|wi| > 0)/d

(re)l1-RDA l1-RDA Pegasos (re)l1-RDA l1-RDA

Pen Digits 0.082 0.073 0.066 0.186 0.350
Opt Digits 0.050 0.061 0.037 0.165 0.246
Semeion 0.042 0.039 0.088 0.124 0.182
Spambase 0.116 0.160 0.099 0.321 0.412
Shuttle 0.067 0.077 0.062 0.307 0.493
Magic 0.225 0.251 0.276 0.290 0.452
Skin 0.066 0.083 0.115 0.680 0.713
Covertype 0.269 0.284 0.281 0.132 0.163

4.2 Results

In this subsection we present some numerical results and evaluations. As we
can notice from Table 2 our proposed reweighted modification of the l1-RDA
approach achieves better sparsity patterns on every dataset while for some of
them it can even attain better generalization performance. For the sake of
completeness we provide values for the l2-norm approach, namely Pegasos [12],
which is an SGD-based stochastic optimization routine but without sparsity

2Derivative-Free Optimization
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inducing capabilities. Comparing test errors of the Reweighted l1-RDA with
other approaches for some datasets we can observe a minor degradation of the
performance for attaining a sparser solution.

5 Conclusions

In this paper we considered the problem of approximating the l0-norm penalty
in the context of linear models and sparse stochastic learning via reweighted l1
minimization. We studied a simple dual averaging scheme for optimization which
enabled us with an elegant and complementary analysis for the regret bounds.
We were able to show that under certain conditions we have a bounded regret
even if the convergence of our auxiliary reweighting iterate Θt is ill-conditioned.
Numerical results demonstrate the advantages of the proposed approach both in
terms of the generalization error and sparsity over the original l1-RDA method.
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A-DATADRIVE-B, GOA/10/09MaNet, CoE EF/05/006, FWO G.0588.09, G.0377.12, SBO
POM, IUAP P6/04 DYSCO.

References

[1] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1 regularized loss mini-
mization. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML ’09, pages 929–936, New York, NY, USA, 2009. ACM.

[2] Nicolas Le Roux, Mark W. Schmidt, and Francis Bach. A stochastic gradient method
with an exponential convergence rate for finite training sets. In NIPS, pages 2672–2680,
2012.

[3] Vilen Jumutc, Xiaolin Huang, and Johan A. K. Suykens. Fixed-size pegasos for hinge and
pinball loss svm. In 2013 International Joint Conference on Neural Networks (IJCNN
2013), pages 1122–1128, 2013.

[4] Lin Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. J. Mach. Learn. Res., 11:2543–2596, December 2010.

[5] Emmanuel Candès, Michael Wakin, and Stephen Boyd. Enhancing sparsity by reweighted
l1 minimization. Journal of Fourier Analysis and Applications, 14(5):877–905, 2008.

[6] Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and fenchel duality. In
Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, NIPS, pages 1265–1272.
MIT Press, 2006.

[7] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, 120(1):221–259, 2009.

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[9] Kaizhu Huang, Irwin King, and Michael R. Lyu. Direct zero-norm optimization for feature
selection. In ICDM, pages 845–850. IEEE Computer Society, 2008.

[10] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to Derivative-Free
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, USA, 2009.

[11] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[12] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM. In Proceedings of the 24th international conference on
Machine learning, ICML ’07, pages 807–814, New York, NY, USA, 2007.

412

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.




