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Abstract. A novel technique to determine the saliency of features for the
multilayer perceptron (MLP) neural network is presented. It is based on
the analytic derivative of the feedforward mapping with respect to inputs,
which is then integrated over the training data using the mean of the
absolute values. Experiments demonstrating the viability of the approach
are given with small benchmark data sets. The cross-validation based
framework for reliable determination of MLP that has been used in the
experiments was introduced in [1, 2].

1 Introduction

Feature or variable selection (FS) refers to selecting the most important input
variables for a data-based model. According to [3], the objective of feature selec-
tion is three-fold: improving the prediction performance of the model, providing
faster and more cost-effective models, and providing a better understanding of
the data generation process (simplifying the data collection process later). In
[4], a given set of features is proposed to be divided into irrelevant, weakly rel-
evant, and strongly relevant subsets. To determine such classification between
features is, in general, a search problem, and many techniques and approaches
for this purpose can be distinguished [5]. However, it was already argued in [6]
that finding an optimal subset of features is usually an intractable problem, even
NP-hard. The two main approaches (with the so-called embedded approach in
between) for feature selection are the filter approach and the wrapper approach
[4], where the current work is of the latter type, i.e., it involves the MLP model
in the assessment of the features.

Feature selection techniques have their origins in variable selection for re-
gression related to statistical modelling. This is described, for example, in [7]
with a clear description of the starting point: for linear models with parameters
estimated using least squares fit, adding more variables to the model means trad-
ing off reduced bias against increased variance. For the MLP, different variable
contribution (ranking) methods in an ecological prediction context were tested
in [8], using BP as the training method and a fixed size (10-5-1) network. The
seven methods compared were i) the Partial Derivatives’ (PaD) method that
uses derivatives of the output with respect to input (see [9]), ii) the Connection
Weights method, iii) the Input Perturbation method, (iv) the Profile method,
and v-vii) three versions of the Classical and Improved Stepwise methods. For
predicting the density of brown trout spawning redds using habitat characteris-
tics, the PaD method was found as the most useful of the tested methods, due to
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proving most information and computational coherency in the form of stability.
Precisely same conclusion was drawn from the similar comparison of four of these
methods, for the application to connect friction stir welding parameters with the
mechanical properties of the aluminum [10]. However, both of these tests were
based on a special data set. Moreover, a thorough study of stopping criterion
and need of network retraining in relation to backward FS for the MLP was per-
formed in [11]. The basic observation there was that when computing saliency
of a feature for the MLP by leaving it aside from input, retraining improves the
selection performance. Numerical experiments were performed with stratified
double five-four-folded (outer division to 5 sets, inner to 4 sets) cross-validation.

In this paper, we develop an assessment method for the feature saliency
of MLP using a PaD-like approach, and provide its brief empirical evaluation
with benchmark data sets through the comparison to all possible MLP models
resulting from any feature subset. The approach as a whole is strictly novel,
even if many individual parts have been introduced and tested in earlier work.

2 The Method

Assume that the data {xi,yi}Ni=1 is given, where xi ∈ Rn0 denote the input
and yi ∈ Rn2 the output vectors, respectively. Determine the weight matrices
W ∈ Rn2×(n1+1) and V ∈ Rn1×(n0+1) for the MLP with single hidden layer of
the size n1 by minimizing the cost function

J (W,V) =
1

2N

N∑
i=1

‖N (W,V)(xi)− yi‖2 +
β

2n1

∑
(i,j)

(
|Vi,j |2 + |(W1)i,j |

2
)
(1)

for the penalization parameter β ≥ 0 and the feedforward mappingN (W,V)(xi) =
WF̃(Vx̃i). By˜we denote the enlargement of a vector by constant 1 to include
biases, so that both weight matrices have the block structure W = [W0 W1]
and V = [V0 V1] for W0 and V0 containing the bias weights. The special form
of penalization omitting the bias column W0 is due to Corollary 1 in [12]: Every
locally optimal solution to (1) provides an unbiased regression estimate having
zero mean error over the training data. Because the MLP model has the linear
final layer, this refines the basic bias-variance interpretation of the linear models
as described in Section 1 due to [7]. Furthermore, the unbiasedness is also a
constraint, i.e., it is always satisfied by the locally optimal MLPs for (1).

This paper continues the work of [1, 2], where the ten-fold cross-validation
(10-CV) has been used as the best-generalization-error seeking learning frame-
work for the MLP. The grid-search of MLP complexity is carried out, with re-
spect to the size of the hidden layer n1 (structural complexity) and the amount
of penalization β to favor small weights (functional complexity, see [13]). More-
over, as demonstrated in [2] (and the original references therein), the use of the
so-called Distribution Optimally Balanced stratified CV (Dob-SCV) can stabilize
the selection of the two metaparameters (n1, β), especially in classification com-
pared to the classical stratified CV. Namely, the folding approach in Dob-SCV is

274

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



Algorithm 1 Feature saliency assessment using the AMAS approach.

Input: Data (X,Y) = {xi,yi}Ni=1 of inputs and desired outputs.
Output: Ranked list of MLP input variables with relative saliencies.

1: Determine (n∗
1, β

∗) as in [2] with 10-Dob-SCV

(n1max = 20, ~β = {10−4, 10−5, 10−6})
2: Train N (W,V) with full data using (n∗1, β

∗) (5 restarts of which the best
solution to (1) is stored)

3: Compute AMAS of N (W,V) using formula (3)
4: Order input features in descending order with respect to AMAS and nor-

malize the final saliencies to have their sum equal to unity

based on approximating the classwise density distributions (or the input density
in regression) in the folds, in addition to approximating the class frequencies
as with the classical stratified CV. To this end, also along the findings in [2],
we compute the network errors for training and test sets in CV using MRSE
(Mean-Root-Squared-Error) instead of the more common RMSE.

To assess the saliency of a feature of the MLP model, the approaches that
were found most successful in the works reviewed in Section 1 were based on the
analytical input-output derivative (the PaD method) and retraining of the MLP
model when its inputs change. The analytic formula of the feedforward network’s
input sensitivity can be directly calculated from the layer-wise description of the
network’s action as given above. It reads as follows:

∂N
∂x

= W1 Diag{(F)
′
(Vx̃)}V1. (2)

To take into account the given training data, (2) is applied to compute the Mean
Absolute Sensitivity, MAS, of the network as follows:

1

N

N∑
i=1

∣∣∣∣∂N∂xi

∣∣∣∣ . (3)

The approach as a whole is referred as AMAS (Analytic MAS). The actual
input ranking is then obtained according to the rule: the higher the AMAS, the
more salient the feature is. This is based on the well-known Taylor’s theorem
in calculus related to local approximation of smooth functions. Namely, if a
function is locally constant, its gradient vector is zero and such a function could
be (locally) represented and absorbed to the MLP bias. Note that exactly the
same starting point to define variables which truly affect the output was taken in
[14] when deriving the Delta Test for FS. Hence, the larger the mean sum of the
absolute values of the local partial derivatives with respect to an input variable,
the more important that input variable is for representing the variability of an
unknown function approximated by the MLP.

The overall approach for obtaining feature saliencies of the MLP is given in
Algorithm 1. This algorithm was preliminarily applied to educational data in
[15] with promising results on a methodologically triangulated framework.
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3 Experimental results

We carried out a set of experiments in Matlab, using fminunc to minimize (1),
with small classification benchmark data sets from the UCI repository as de-
scribed in Table 1. All features were scaled into the range [0, 1] of the sigmoidal
activation functions, and the class labels were encoded as target output using
the 1-of-n2 coding scheme. For all data sets, all the best-generalization-error
MLP models were determined using 10-Dob-SCV by testing all possible 2n0 − 1
variable subsets. This was done to properly assess the proposed technique, how-
ever, meaning that when combined with the grid search in Step 1 of Algorithm
1, the wall-clock time of the individual tests was hours or even days even with
these small data sets. In the tables, we report the best models with their mean
MRSE over the test folds (TsE) and the mean amount of misclassifications in
percentages over the test folds (TsFCP). For some feature subsets there is only
one result providing minimal solution for both of these quantities whereas in cer-
tain cases two different solutions are given. For each test data, the best TsE and
TsFCP are indicated with the bold font. Ranking of all input features according
to Algorithm 1 is provided in the last row of the corresponding table.

We draw the following conclusions from Tables 2–4: i) For “Iris”, the two
most important features as determined by the experimented subsets are {3}
and {4} which are ranked top by the AMAS-algorithm 1 as well. These results
coincide with the tests and conclusions in [5]. The best feature selection sug-
gested by the minimal TsE and TsFCP is to keep all the features. However,
for a reduced model, the second best TsFCP (3.3) is already obtained with two
or three variables including feature {1} which is not highly ranked both by the
AMAS-algorithm or the tests in [5] (also visually it does not appear relevant).
ii) For “Seeds”, we have in all aspects an excellent result by the proposed tech-
nique: The most common variables in the best models encountered during the
full exploration are correctly identified by the AMAS-algorithm. The best model
for both TsE and TsFCP is obtained with the three variables {1, 4, 7}, whose
AMAS-values for the full set are also clearly higher than for the rest of the origi-
nal features. Moreover, for the reduced three feature model, the AMAS-ranking
with the corresponding relative saliencies is {7}/0.35, {4}/0.35, and {1}/0.29,
which again coincides with the overall importance of the individual features. iii)
For “Glass”, with imbalanced class frequencies, the results appear more complex.
There is a significant difference between the models of best TsE and best TsFCP,
with low correlation of the two quantities in the reduced models in general. The
best TsE with six variables is well captured in the order of the AMAS-ranking

Name of data Abbr. N n0 n2 Class frequencies
Iris Iris 150 4 3 [50 50 50]
Seeds Seeds 210 7 3 [70 70 70]
Glass Identification Glass 214 9 6 [70 76 17 13 9 29]

Table 1: Description of UCI classification data sets for the experiments.
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Inds TsE(Std)/TsFCP Inds TsE(Std)/TsFCP
{4} 1.08e-1(5.3e-2)/4.0 {1, 3} 8.74e-2(7.2e-2)/3.3
{2, 3, 4} 6.95e-2(6.6e-2)/4.0 {1, 3, 4} 6.96e-2(6.1e-2)/3.3
{1, 2, 3, 4} 6.46e-2(7.1e-2)/2.7 {3}/0.37, {4}/0.35, {2}/0.20, {1}/0.08

Table 2: Results for Iris.

Inds TsE(Std)/TsFCP Inds TsE(Std)/TsFCP
{1} 2.67e-1(4.1e-2)/13.8 {2} 2.68e-1(4.2e-2)/13.8
{2, 7} 1.05e-2(3.9e-2)/5.2
{1, 4, 7} 8.90e-2(5.3e-2)/3.8 {2, 4, 7} 9.04e-2(4.5e-2)/3.8
{1, 2, 4, 7} 9.33e-2(6.1e-2)/4.8 {2, 4, 5, 7} 9.98e-2(5.7e-2)/4.3
{1, 2, 3, 4, 7} 9.81e-2(6.3e-2)/4.8 {1, 2, 4, 5, 7} 1.05e-1(6.1e-2)/4.3
{1, 2, 4, 5, 6, 7} 1.05e-1(6.6e-2)/5.2
{7}/0.26, {4}/0.24, {1}/0.17, {2}/0.11, {5}/0.08, {3}/0.07, {6}/0.07

Table 3: Results for Seeds.

Inds TsE(Std)/TsFCP Inds TsE(Std)/TsFCP

{1} 7.08e-1(4.9e-2)/43.8 {4} 7.13e-1(6.2e-2)/41.2
{1, 3} 5.61e-1(6.5e-2)/27.3 {1, 2, 3} 5.74e-1(5.1e-2)/26.0
{1, 3, 6, 8} 5.68e-1(7.2e-2)/26.8
{2, 3, 5, 7, 8} 5.57e-1(9.1e-2)/30.0 {1, 3, 5, 6, 8} 5.83e-1(9.0e-2)/28.1
{2, 3, 5, 6, 7, 8} 5.36e-1(8.5e-2)/29.0 {2, 3, 4, 6, 8, 9} 5.66e-1(9.6e-2)/28.8
{2, 3, 5, 6, 7, 8, 9} 5.82e-1(1.1e-1)/31.9 {1, 2, 3, 4, 5, 7, 8} 5.98e-1(7.4e-2)/26.1
{1, 3, 4, 5, 6, 7, 8, 9} 5.72e-1(5.4e-2)/31.4 {2, 3, 4, 5, 6, 7, 8, 9} 5.92e-1(9.4e-2)/29.4
{8}/0.36, {7}/0.22, {3}/0.10, {6}/0.09, {1}/0.07, {5}/0.05, {2}/0.05, {4}/0.04, {9}/0.03

Table 4: Results for Glass.

(except feature {1}), which also identifies the individually mostly occuring fea-
ture in the best models of different size, namely {8}. However, an important
feature for the best 10-Dob-SCV based MLP models with respect to TsE and
TsFCP, namely {2}, does not have a high relative saliency. Altogether, the re-
sults in Table 4 show the difficulty in defining an appropriate reference in FS
when the correlation between the model’s generalization measure TsE and it’s
actual quality, TsFCP, is jeopardized.

4 Conclusions

We witnessed many potential advantages of feature selection according to [3], as
stated in Section 1, with the AMAS-algorithm. The full feature set was the best
overall choice for “Iris”, even if only half of the original variables yielded to a high
generalization accuracy in classification. For “Seeds”, the best model, reliably
determined by AMAS, contained only three of the original seven features. For
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“Glass” with imbalanced class frequencies, the best models with respect to the
two measures considered were different, but still with reduced subsets of features.
The most important features for this data set were not identified perfectly when
analyzing the full feature set “surface” using the AMAS-algorithm. To conclude,
in two of the three cases, the AMAS-algorithm 1 applied to the full problem was
able to detect and identify the most salient features of the best-generalization-
error MLP model according to 10-Dob-SCV.
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