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Abstract. DRASiW is an extension of the WiSARD Weightless NN
model with the capability of storing the frequencies of seen patterns during
the training stage in an internal data structure called “mental image”
(MI). Due to these capability, in previous work it was demonstrated how
to reversely process MIs in order to generate synthetic prototypes from
training samples. In this paper we show how DRASiW–like systems are
able to transfer memory between different architectures while preserving
the same functionalities.

1 Introduction

The knowledge from Artificial Neural Networks (ANN) that have learned one
task can be reused on related tasks in a process that is called “transfer” [1]. In
such cases, knowledge transfer or transfer learning between task domains would
be desirable. In particular, transfer learning aims to extract the knowledge from
one or more source tasks and to apply this knowledge to a target task [2].

The most important distinction between different types of transfer learning
in ANN is representational versus functional. The former, is based on the idea
to literally copy the trained network and train it on the new task; while, the
latter does not involve the explicit assignment of prior task representation to
a new task rather it employs the use of implicit pressures from supplemental
training examples [3]. As reported in [1], source data is typically part of the
training process in functional transfer if the source training data are available.

In this paper we propose a different approach to transfer learning in DRASiW–
like systems. The new process, called memory transfer, is neither based on the
availability of source training data nor on the aim of approaching related tasks.
In particular, we focus the attention on how the functionalities of a DRASiW
system can be transfer to another DRASiW system but with a totally differ-
ent architecture. The aim of this work is to use the knowledge of the source
system in order to create clones with different architectures but with the same
functionalities. This is possible thanks to a particular characteristic DRASiW–
like systems have: the capability of producing a pictorial representation of their
stored information (“mental images”).

In the next sections we are going to introduce the DRASiW–like systems and
how to transfer the system functionalities between DRASiW systems through
their mental images. Comparison of experimental results of DRASiW original vs
cloned systems on four datasets, selected from UCI Machine Learning repository,
shows low degradation of the proposed learning transfer process.
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Fig. 1: RAM–neuron (left) and a WiSARD discriminator (right)

2 Weightless Neural Systems

Weightless Neural Networks (WNNs) [4][5], differently from classical Artificial
Neural Networks, adopt a RAM–based model of neuron by which learned knowl-
edge about a data domain is stored into RAM contents instead of computed
weights of neuron connections. A RAM–based neuron receives an n–bit input
that is interpreted as a unique address (stimulus) of a RAM location, used to
access it either in writing (learning) or reading (classification) mode. WNNs
have been shown to provide fast and flexible learning algorithms.

WiSARD systems are a particular type of WNN, that can be developed
directly on reprogrammable hardware [6]. A WiSARD is composed of a set
of classifiers, called discriminators, each one assigned to learn binary patterns
belonging to a particular category/class. Therefore, a WiSARD has as many dis-
criminators as the number of categories/classes it should be able to distinguish.
The WiSARD is also called “multi–discriminator architecture”.

Each discriminator is formed by a set of RAM nodes which store the in-
formation of occurrences of binary patterns during the learning stage. Given
a binary pattern of size s, the so–called retina, it can be classified by a set of
WiSARD discriminators, each one having x RAMs with 2n locations such that
s = x×n. Since each RAM location is uniquely addressed by an n–tuple of bits,
the input pattern can be partitioned into a set of n–tuples, each one addressing
one location in exactly one RAM. n–tuples are pseudo–randomly selected and
biunivocally mapped to RAMs (see right part of figure 1), in such a way that
the retina is completely covered.

In order to train the discriminators one has to set all RAM locations to 0.
For each training pattern, a 1 is stored in the memory location of each RAM ad-
dressed by the training pattern. During classification phase, the RAM contents
addressed by the input pattern are read and summed by Σ. The number r thus
obtained, called the discriminator response, is a sort of “similarity measure” of
the input pattern with respect to the patterns in the training set (TS).

DRASiW [7] is an extension of the WiSARD model. During DRASiW train-
ing phase, memory locations accessed in write mode are incremented by 1 instead
of set to 1. Thus, at the end of training, RAM contents store the number of
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occurrences (frequency) of a specific n–tuple of bits across training samples. In
reading mode, the Σ adder of the DRASiW counts the number of non–zero values
stored in the addressed RAM locations. Therefore a DRASiW system behaves
like a WiSARD in the classification stage.

The DRASiW enhances the WiSARD with a backward–classification capa-
bility [8][9], i.e., each discriminator is able to produce representative examples
of a class that have been learnt from trained patterns. In order to make this
possible, RAM locations act as access counters, whose contents can be reversed
to an internal “retina”, where a “mental” image is produced, thus yielding a
bidirectional structure. The “mental” image metaphor, associated with the in-
ternal “retina” metaphor, was originally explored in [10] in which the authors
discuss the cognitive plausibilities related to these ideas.

3 From mental images to synthetic training set

Let us consider the mental image on the right side of figure 2. The image gray
levels represent how many times the pixels were present in the instances of the
original training set (some of these instances are shown on the left side of figure
2). The darker the pixel, more frequent is the bit associated to it. This is the only
knowledge a mental image carries with it. In fact, we have no information about
how the subpatterns (groups of correlated pixels) form the RAM addresses in
each training sample. Hence, we expect that a memory transfer mechanism based
on mental images will be characterize by a degradation in system performances
although it will preserve the mental image.

The mental images can be depicted in 3D where the new dimension is rep-
resented by the pixel gray levels. Figure 3 shows the 3D representation (right
side) of the mental image of class “2” (left side).

What we get is a sort of city downtown upper view where pixels are repre-
sented by skyscrapers. All the information is stored in the downtown except for
the way it was built: we see the result but not the procedure to build it.

From the 3D representation of the mental image, we can create a Synthetic
Training Set (STS) by considering the meaning of gray levels, that is how many
times those pixels were black in the images forming the original TS. The highest
gray level will represent the possible number of events, all the other bray levels
will represent distinct favorable events. In order to reproduce a synthetic and
plausible TS we randomly distribute the building floors along the size of the
highest one. So doing, we generate a new downtown formed by skyscrapers

Fig. 2: Partial TS for class “7” and its corresponding mental image
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Fig. 3: Mental image and its 3D representation

Fig. 4: Top: original training set (TS) – Bottom: synthetic training set (STS)

having all the same height but with real floors and missing floors from the
ground to the top. At this point we start sinking the downtown floor by floor.
In every sinking step, the patterns of the building floors are going to form the
instances of the new STS (prototypes). In figure 4, prototypes of class “2” of
the new STS generated by the mental image of figure 3 are reported. The STS
is now used to train a new DRASiW–like system: the clone system.

The original system is mainly characterized by: a) the number of classes; b)
the retina size; c) the n–bit addressing of RAMs. The number of classes fixes
the number of DRASiW discriminators; the retina size together with the n–bit
addressing determine the number of neurons for each DRASiW discriminator.
The clone and the original system share only the number of discriminators and
the capability of generating the same mental images. The retina and the n–bit
addressing of the clone system do not depend on the original system.

4 Results

We evaluated the original and clone systems comparing them through their func-
tionalities: F–measures (Fm) and mental images. The comparison was car-
ried out on four different DataSets from the UCI ML Repository: OptDigits1,
ImgSeg2, Splice3, and HAR4. We chose these DataSets because of their differ-
ences in problem size and domain: 32×32 bitmap images (OptDigits); 19 numer-

1Optical Recognition of Handwritten Digits.
2Image Segmentation.
3Molecular Biology (Splice–junction Gene Sequences).
4Human Activity Recognition Using Smarphone.
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Trained On OptDigits – retina=1024px
TS 0.779 ± 0.014 0.924 ± 0.007 0.967 ± 0.003 0.977 ± 0.003

STS 0.738 ± 0.020 0.880 ± 0.007 0.922 ± 0.004 0.929 ± 0.004
∆ 4.1% 4.4% 4.5% 4.8%

ImgSeg – retina=2432px
TS 0.868 ± 0.015 0.899 ± 0.013 0.923 ± 0.012 0.951 ± 0.005

STS 0.850 ± 0.014 0.864 ± 0.010 0.874 ± 0.011 0.877 ± 0.015
∆ 1.8% 3.5% 4.9% 7.4%

Splice – retina=30720px
TS 0.380 ± 0.000 0.631 ± 0.010 0.778 ± 0.008 0.847 ± 0.011

STS 0.380 ± 0.000 0.601 ± 0.018 0.751 ± 0.012 0.788 ± 0.012
∆ 0.0% 3.0% 2.7% 5.9%

HAR – retina=287232px
TS 0.836 ± 0.005 0.853 ± 0.006 0.871 ± 0.006 0.892 ± 0.004

STS 0.823 ± 0.004 0.834 ± 0.005 0.843 ± 0.005 0.849 ± 0.004
∆ 1.3% 1.9% 2.8% 4.3%

2 bits 4 bits 8 bits 16 bits

Table 1: Fm of the original and clone systems on different datasets

ical attributes associated to outdoor images (ImgSeg); 60–char strings represent-
ing gene sequences (Splice); 561 feature vectors with time and frequency domain
variables (HAR). Furthermore, the retina size goes from 1024px in OptDigits to
287232px in HAR.

In order to test the systems (original vs clone), we generated 100 differ-
ent retina–to-RAM mappings. For each mapping, we collected the Fm of the
DRASiW systems trained on TS and STS, in different configurations (from 2 to
16 bits) and for each DataSet. Table 1 reports the Fm means and deviations
and the differences (in percentage) between the Fm means of the original and
clone systems (∆).

Although the mental images do not bring with them the information about
the correlation between subpatterns forming the original patterns, the perfor-
mances of the clone systems are very comparable to those of the original systems.
This loss of information and its consequences on the clone system performance
become slightly more evident through increasing the number of bits and the
retina size.

We also evaluated the systems in terms of the capability of generating plau-
sible mental images: all the mental images generated by the clone systems are
exactly the same produced by the original systems. This is due to the algorithm
that generates mental images which does not depend on the original system ar-
chitectures and configurations. Therefore, only upon the first cloning from the
original system a degradation of Fm occurs: successive cloning processes from
the first clone system do not imply further degradation of performance. The
complete set of mental images generated by the DRASiW devoted to OptDigits5

is reported in figure 5.

5We report only OptDigits mental images because their silhouettes are easily interpretable.
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Fig. 5: Top: Original mental images – Bottom: Clone mental images

5 Conclusions

In this paper we have discovered and shown a new and interesting feature of
DRASiW systems. A part from the new theoretical aspects related to Weightless
Neural Systems, we have introduced a new methodology that can allow the use
of the same DRASiW system in different applications and on various hardware
configurations. For instance, smartphone applications in which we just have an
empty and generic DRASiW system and use it just downloading, and hence,
transferring the memory related to the new application domain.

In the wake of the results obtained, we are now facing the problem of mem-
ory graft in DRASiW systems. We are trying to merge the memories of two
DRASiW systems in order to have just one system with new functionalities.
In more details, we are addressing the problem of grafting the memory of a
DRASiW system in part of the memory of another already trained system with-
out catastrophic forgetting.
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