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Abstract. Convolutional neural networks are popular for image labeling
tasks, because of built-in translation invariance. They do not adopt well to
scale changes, however, and cannot easily adjust to classes which regularly
appear in certain scene regions. This is especially true when the network is
applied in a sliding window. When depth data is available, we can address
both problems. We propose to adjust the size of processed windows to the
depth and to supply inferred height above ground to the network, which
significantly improves object-class segmentation results on the NYU depth
dataset.

1 Introduction

An important property of convolutional neural networks (CNN) is their invariance
to translations. This invariance property is created by sharing weights between
all image locations, and by pooling over nearby locations. For many tasks in
computer vision, translation invariance is desirable, but some object classes
(eg. sea, sky) are more likely to appear in certain scene regions. Furthermore,
depending on the distance to the camera, the same objects can also appear at
different scales, but scale invariance is missing in the CNN architecture. There
are two commonly applied solutions to the problem. We might present the input
to the network at multiple scales during training, such that the network can learn
the invariance. This option requires large models and sufficient data, since we
need to learn the same task independently at all scales. If object annotations are
available, we can scale objects to a uniform size before presenting them to the
CNN. To produce a prediction for a novel image, the network has to be applied
to every image position at multiple scales, and the results must be combined.
This approach is called sliding windows.

In object-class segmentation, where every pixel is labeled with the class of
the object it belongs to, there are typically no object annotations. Thus, the
sliding window approach is not feasible.

In this paper, we propose a third option which relies on the availability of
depth for the image pixels (RGB-D). The required dense depth estimates are
produced e.g. by affordable consumer cameras such as the Microsoft Kinect,
which has become popular in computer vision [1, 2] and robotics [3]. We propose
to use depth information in CNNs as follows:

1. We train the network on image patches with a size chosen proportional
to the depth of the patch center. Since training is scale invariant, we can
afford smaller models and make more efficient use of training data.
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2. For novel images, we propose a sampling scheme which covers the image
with overlapping patches of depth-adjusted size. Thus, closer image regions
are processed at a large scale, while far-away regions are processed at a small
scale. This automatic adjustment is more efficient than sliding windows,
because the scale is chosen automatically. In contrast to a multi-scale
sliding window, our scale adjustments are continuous.

3. Finally, we propose to use height above ground as an additional input to
the CNN. Height is an important clue and quite distinct from the distance
from the camera. E.g., floor pixels might occur at any distance from the
camera, but they always have zero height.

We evaluate our method on the NYU Depth v2 dataset, which contains
indoor scenes annotated according to their object class and find that both height
annotation and depth normalization significantly improve CNN performance.

2 Related Work

Depth normalization of features has been proposed in the context of random
forests [1, 4] by Stückler et al. [5]. The binary features in their work consist of
region average differences, where both region sizes and distances to the query
pixel are scaled with the depth. In this work, we scale image patches, not features.
While this requires more computation during preprocessing, it allows for more
expressive features.

Hermans et al. [6] and Stückler et al. [7] use random forests as a baseline
and aggregate video information over time with self localization and mapping
(SLAM). Here, we focus on single image prediction, which is comparable to
random forest learning.

Using height for indoor scene object-class segmentation was introduced by
Müller and Behnke [8]. The authors use the output of a random forest, merge
the predictions within superpixels and learn a conditional random field (CRF)
which has access to the average superpixel height. In contrast to their work, we
incorporate height into the base classifier, which we then use to directly improve
the unary term of their CRF.

Couprie et al. [9] and Höft et al. [10] train CNNs for object-class segmentation
using depth information, with very different approaches. Couprie et al. [9] train
three CNNs with shared weights on three scales. The upsampled results are then
combined to yield output maps corresponding to object-class labels. Thus, in
contrast to our proposed method, the image is always trained and evaluated on
all three scales. The label probabilities are then averaged within superpixels of
an oversegmentation. Superpixel averaging is compatible with our approach and
further improves our performance.

Höft et al. [10] also use a CNN with a multi-scale approach, but treat scales
differently. Larger scales have access to predictions from smaller scales and can
modify them. Treating scales differently can be justified by the fact that in
indoor scenes, certain objects (dressers, beds) are typically much larger than
others (vases, television sets), and need more context to be recognized. Note that
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Table 1: Network architecture used for this paper.

Layer # Parameters Filter Size Stride #Maps Map Size

Input – – – 8 64×64
Conv1 12,576 7×7 1 32 64×64
Pool1 – 2×2 2 32 32×32
Conv2 50,208 7×7 1 32 32×32
Pool2 – 2×2 2 32 16×16
Conv3 6,304 7×7 1 4 16×16

while in this work, we use only one scale for every patch, it is also possible to use
a multi-scale approach where all scales are depth-adjusted simultaneously.

3 Methods

Network Architecture We use the simple feed forward convolutional architec-
ture shown in Table 1, with interleaved convolutional max-pooling layers, and
rectification (ReLU) non-linearities. With less than 70,000 parameters in total, it
is a very small network (cf. [9, 10]). While performance might improve with size
and better regularization (i.e. dropout), we would like to emphasize that depth
and height awareness allows to reduce the number of parameters significantly.

Covering Windows We choose patch sizes s in the original image inversely
proportional to the depth d(xc) of a selected patch center xc, with s = γ/d(xc).
The parameter γ is set to 300 px m throughout this paper, such that enough
context is provided to the network, and receptive field sizes are similar to the scale
of the random forest features by Stückler et al. [7]. The patch is then scaled to
the input dimension of the CNN with bilinear interpolation. If parts of the patch
are outside the original image, we extend it by reflection on the border. Due to
irregular patch sizes, a sliding window approach with fixed strides would sample
too densely in regions with shallow depth or too coarsely in far-away regions.
Instead, we simply ensure that the patches cover the image. We sequentially
sample patch centers xc from a multinomial distribution, with probabilities

p(xc) ∝

{
0 if xc ∈

⋃
w∈W w

d(xc) else,
(1)

where W is the set of patches sampled so far. Depth-proportional probabilities
ensure that far regions are covered before near regions, which ensures that they
are covered by small patches.

When predicting, we use bilinear interpolation to upsample the network
output to the original patch size and accumulate the predictions for all image
patches. We use radially decreasing weights r(‖x − xc‖) in the accumulation,
since the depth normalization is strictly valid only for the patch center.
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Input Features We use eight input maps: The raw RGB channels, four containing
a simplified histogram of oriented depth [10], and one map for the height. The
height map is computed by extracting normals in the depth images, clustering
them into ten clusters and finding the cluster that is most vertical. All points are
projected to this normal and the height of the lowest point is subtracted. From
all input maps, we subtract the dataset mean and ensure that maps have similar
variances.

3.1 Training Procedure

During training, we select patch centers xc randomly, determine their size, and
add small distortions (rotations of up to 5◦, scalings of up to 5%, and horizontal
flipping). CNN weights are initialized randomly from U(−0.01, 0.01). We use
a batch size of 128 and an initial learning rate of 0.001, with a momentum of
0.9 and exponentially decreasing learning rate schedule. We optimize pixel-wise
weighted multinomial logistic loss over the output maps, with weights

w(x) =


0 if x is not annotated

0 if x is outside the original image

r(‖x− xc‖)/p(c(x)) else,

(2)

where p(c(x)) is the prior probability of the class x is annotated with.

4 Experiments

We train our network for object-class segmentation on indoor scenes on the NYU
Depth v2 dataset [11], containing detailed annotations of 1449 RGB-D images
split into 795 training and 654 testing images. We focus on the four semantic
structural classes floor, structure, furniture, and prop. An additional void class
resembles regions not annotated and is excluded from evaluation.

Our results are summarized in Table 2. We compared our method with other
state-of-the art neural networks as well as methods which, for comparability, do
not use extensive post-processing through CRFs or aggregation over time. We
trained four models: a baseline method only using covering windows (CW), two
with added depth normalization and height (CW+DN and CW+H, respectively),
and a combined model (CW+DN+H). When training without depth normaliza-
tion, we use the average patch size found by the depth normalization (135 px).
We find that our combined model improves significantly over the other methods
in terms of class average and pixel accuracies. The height feature contributes
more to the overall improvement than depth normalization, but both ideas seem
to complement each other.

Finally, our predictions can be used as input to high-level methods, such as
super-pixel averaging (CW+DN+H+SP) and conditional random fields (CW+DN
+H+CRF). We use method and implementation of Müller and Behnke [8], and
find that class and pixel average accuracies improve by more than one percentage
point when using our CNN predictions in place of their globally optimized
random-forest predictions.
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Fig. 1: Sample segmentations from test set using the CW+DN+H model. Left
to right: Original image, depth with patches denoted by circles, height above
ground, ground truth and prediction.

Table 2: Results on NYU Depth v2 dataset

Method floor struct furnit prop Class Avg. Pixel Acc.

CW 84.6 70.3 58.7 52.9 66.6 65.4
CW+DN 87.7 70.8 57.0 53.6 67.3 65.5
CW+H 78.4 74.5 55.6 62.7 67.8 66.5
CW+DN+H 93.7 72.5 61.7 55.5 70.9 70.5
CW+DN+H+SP 91.8 74.1 59.4 63.4 72.2 71.9
CW+DN+H+CRF 93.5 80.2 66.4 54.9 73.7 73.4

Müller et al.[8] 94.9 78.9 71.1 42.7 71.9 72.3
Random Forest [8] 90.8 81.6 67.9 19.9 65.1 68.3
Couprie et al.[9] 87.3 86.1 45.3 35.5 63.6 64.5
Höft et al.[10] 77.9 65.4 55.9 49.9 62.3 62.0
Silberman [12] 68 59 70 42 59.7 58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is
averaged within superpixels and SVM-reweighted. CRF is a conditional random field over
superpixels [8]. Structure class numbers are optimized for class accuracy.
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Sample segmentations, as well as patch size and height visualizations, are
shown in Fig. 1. Note that the network sometimes overgeneralizes (carpet is
labeled as floor, not prop in row 3), but generally identifies floor/not-floor well
even in images where no or little floor is visible and our simple height extraction
algorithm fails (row 5).

5 Conclusion

We proposed two extensions for convolutional neural networks which exploit
depth information: i) covering windows which are scaled by the depth of their
center and ii) height-above-ground input maps. Our evaluation on the NYU
Depth v2 dataset shows that the proposed approach can outperform other neural
network and random forest methods. In future work, we plan to extend our
method with multi-scale depth-normalized processing.
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