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Abstract. The paper introduces a feature selection wrapper designed
specifically for Echo State Networks. It defines a feature scoring heuristics,
applicable to generic subset search algorithms, which allows to reduce the
need for model retraining with respect to wrappers in literature. The
experimental assessment on real-word noisy sequential data shows that the
proposed method can identify a compact set of relevant, highly predictive
features with as little as 60% of the time required by the original wrapper.

1 Introduction

Feature selection for sequential data is a key challenge in application scenarios,
such as that of pervasive computing, where a considerable number of data sources
is available, producing streams of heterogenous, noisy and potentially redundant
measurements. Typical pervasive computing applications, for instance, comprise
learning models receiving flows of measurements from a network of sensors per-
vasively deployed in the environment and providing real-time predictions, e.g. on
ongoing events. Few approaches are specifically tailored to feature selection from
multivariate time-series: [1], for instance, discusses a filter-based unsupervised
approach to reduce feature redundancy; wrapper approaches [2], on the other
hand, seek a feature subset that optimizes the performance of a specific learn-
ing model on a specific learning task. They typically employ a search procedure
that recursively eliminates/adds features to a candidate subset [2], evaluating its
fitness in terms of the validation performance of the learning model trained on
the current feature subset. Clearly, such an iterative retraining approach poses
strong computational requirements. This work proposes an efficient feature se-
lection wrapper specific for Echo State Networks (ESNs) [3], that are recurrent
neural networks well suited to deal with sequential data, being characterized by
a good trade-off between accuracy and computational efficiency. For instance,
in the RUBICON project [4], ESNs have been embedded on low-power sensor
devices distributed in the environment and used to perform real-time predictive
tasks based on the sensor data streams. In such a scenario, the use of feature
selection approaches becomes fundamental even when the number of input fea-
tures is small, as it allows to save critical resources. Computational efficiency of
feature selection is also central as it is performed online within the distributed
system. The wrapper approach introduced here addresses these two issue by
proposing a feature ranking score that considerably reduces the need for multi-
ple model retraining, yielding to a considerable reduction in the computational
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load with respect to wrapper approaches in literature. Further, this appears to
be the first feature selection algorithm designed specifically for the ESN model.

2 Feature Selection Wrapper for ESN

We introduce the Echo State Network Input Gain Measurement Approximation
(ESNigma) score for efficient wrapper-based feature selection in ESN models.
The intuition underlying the ESNigma score, inspired by the work in [5], is that
the weights of a trained ESN readout can be exploited to determine the contri-
bution of each input feature to ESN output. The magnitude of such contribution
can then be used to rank the input features by relevance, guiding the selection of
the feature subsets in the wrapper search procedure, without requiring to retrain
the ESN model for each candidate input subset.

The ESNnigma score for the i-th feature, with respect to the k-th output, is

ESNigmaik =
LGik

maxi{LGik} · 100 (1)

that is the normalized local gain LGik of the k-th output with respect to the
i-th input. The local gain is defined as

LGik =

∣∣∣∣
∂yk(n)

∂ui(n)

∣∣∣∣ =
NR∑

j=1

∣∣∣∣W
out
kj

∂xj(n)

∂ui(n)

∣∣∣∣ (2)

where ui(n) is the i-th input at time n and yk(n) is the corresponding k-th
linear output. The rationale underlying (2) is that input signals that are noisy
or irrelevant to the output will impact ESN performance if their gain is large in
magnitude (in modulo). Local gain computation is based on a backpropagation-
like derivation of (2), whose first step is shown as the rightmost element of the
equality in (2), where W out

kj is the k-th readout weight from the j-th reservoir
neuron, having output xj(n) at time n. The derivation in (2), and those in
the remainder of the section, follow from the standard equations of the leaky-
integrator ESN model: these are omitted due to space limitations, but the reader
is referred to [3] for a standard introduction to the model. The output of the
j-th ESN reservoir neuron at time n can be rewritten as a function of the i-th
input feature as

xj(n) = (1− a)xj(n− 1) + a · f
(
W in

ji ui(n) + Cji(n) +

NR∑

z=1

Ŵjzxz(n− 1)

)
(3)

whereW in
j· and Ŵj· are the input-to-reservoir and the recurrent reservoir weights

for the j-th neuron, respectively, f is the hyperbolic tangent activation function
and a is a leaking rate (controls the speed of state dynamics). The term Cji(n)
holds the contribution from all ESN inputs u to the j-th reservoir unit (including
bias) except that from the i-th feature: hence, it can be considered a constant
when differentiating by ui(n) in (2) and thus disappears when deriving (3).
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The derivation of (3) can be simplified as in [5] by considering an approxima-
tion that substitutes the nonlinear activation function f (an hyperbolic tangent)
with a linear factor F . This approximation is reasonable since we are mostly
interested in the contribution of the weights’ magnitude to the output, rather
than in the relationship between the output and the neuron dynamics; the ap-
proximation’s error in computing the local gain is deemed acceptable [5] when
the inputs of the neural model are all in the same range (in our case, this holds
as ESN inputs are normalized). Therefore, the derivative in (3) writes as

∂xj(n)

∂ui(n)
= (1− a)

∂xj(n− 1)

∂ui(n)
+ a · F ·

(
W in

ji +

NR∑

z=1

Ŵjz
∂xz(n− 1)

∂ui(n)

)
(4)

given that ∂ui(n)
∂ui(n)

= 1 and
∂Cji

∂ui(n)
= 0. To complete calculation of (4), we need to

be able to compute, for each reservoir neuron j′, the recursively defined derivative
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∂ui(n)
= (1−a)
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∂ui(n)
+aF

(
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Ŵj′z
∂xz(n− 2)

∂ui(n)

)
.

(5)

The recursion base is for n = 1, when
∂xj′ (0)
∂ui(1)

= 0. The term ∂ui(n−1)
∂ui(n)

is a

time-lagged derivative of the i-th input signal. Now, since we are dealing with
sequential data, we should assume that there exists a certain relationship be-
tween the input signal at time n and its value at time n − 1. Hence, it is
reasonable to assume that such derivative is not null. On the other hand, for
the sake of computing the local gain, we are not interested in quantifying the
exact value of such relationship. Therefore, it is reasonable to assume that such
a derivative exists and it is equal to some value q that is constant at each time
instant and for each input feature i. As a result, (5) rewrites as

∂xj′(n− 1)

∂ui(n)
= (1− a)

∂xj′(n− 2)

∂ui(n)
+ aF

(
W in

j′i · q +
NR∑

z=1

Ŵj′z
∂xz(n− 2)

∂ui(n)

)
. (6)

In the remainder of the paper, we will assume q = 1 for the sake of simplicity.
The term in (6) can be recursively computed by unfolding it in time, with base

case for
∂xj′ (1)
∂ui(2)

= a·F (W in
j′iq), providing a closed form definition for the local gain

LGik. Computing (6), using a simple identity function as linear approximation
F (·), requires 2+NR multiplications for each reservoir neuron and time instant.
By appropriately exploiting the common terms in (6) and its recursive definition,
it can be efficiently computed if unfolded from time 1 to n−1: at a given time step

t, we compute and store the partial derivative
∂xj′ (t−1)

∂ui(t)
for all reservoir neurons

j′, which is used at time t + 1, to compute the next partial derivative. This
yields to a complexity that is O(n · (2NR +N2

R)) multiplications for computing
partial derivatives up to time n. As regards memory occupation, at each time t,
we need only to store information on the partial derivatives (6) at the previous
time step (for each reservoir neuron).
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The ESNigma score can be used to guide different feature subset search
procedures: the rationale is try to eliminate first those features with higher local
gain that, if noisy or irrelevant, can have a stronger negative effect on ESN
performance. Here, we focus on a simple greedy Hill Climbing (HC) search, to
evaluate the sole effect of ESNigma, sparing any benefit originated by the use
of refined search policies. At the same time, greedy HC search is adequate for
the time and resource constrained applications, as it maintains computational
complexity to the minimum. Very briefly, the ESNigma HC (EHC) algorithm
has the following scheme:

1. Start with the feature subset F containing all the features; set iteration
counter it = 0.

2. Use a Cross-Validation (CV) setting to train the ESN on the current subset
F and compute the validation error at current iteration Eit

val.
3. Compute the ESNigma score for each i ∈ F at iteration it.
4. Repeat the following until a delectable feature is identified or all features

in F have been tested:

(a) Select from F the first untested feature i′ with the highest ESNigma
(b) Set F ′ = F/i′; train the ESN on the feature subset F ′ and compute

the validation error EF ′ .
(c) If EF ′ < Eit

val jump to step 5, else mark i′ as tested and jump to step
4(a).

5. If no features have been selected at step 4 terminate, else set it = it + 1,
Eit

val = EF ′ , F = F ′ and jump back to step 3.

Steps 3 shows the key advantage of using ESNnigma over performance-based
wrappers in literature: the latter, in fact, would have required to retrain and
assess the ESN on each subset generated by eliminating one feature from the
current feature set in order to determine the feature ranking. ESNnigma, on
the other hand, allows to perform feature ranking by using the ESN trained at
the previous HC iteration allowing, in principle, to retrain a single ESN on the
new feature subset obtained by removing the worse ESNigma feature in step
4(b). Indeed, more refined search procedures can benefit from the computa-
tional efficiency of the ESNnigma policy: [5] provides a comparative experimen-
tal analysis of different search algorithms for feature selection in feedforward
neural networks.

3 Experimental Results

The experimental comparison assesses if ESNigma is advantageous in terms of
trade-off between predictive accuracy, number of selected features and compu-
tational requirements (i.e. time needed to perform feature subset selection). To
this end, we compare the EHC wrapper with a performance-based HC wrapper,
where the latter identifies the candidate feature for elimination by training a
different ESN for each feature subset, ultimately selecting the one with the best
validation error. Two benchmarks from a pervasive computing application, that
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is localization from Received Signal Strength Information (RSSI), are used. The
scenario includes a Wireless Sensor Network (WSN) comprising a set of station-
ary devices (anchors) that exchange radio packets with a mobile device (the
mote). The task is to train an ESN to provide the x, y localization of the mote
mounted on a mobile robot from the RSSI of the radio packets exchanged be-
tween anchors and the mote. RSSI data tends to be very noisy, with a behavior
heavily influenced by changes to the operating environment, which makes this a
challenging learning task [4, 6, 7]. The Turtle benchmark comprises 5 anchors
and a mote deployed on a corridor of the Computer Science Department in Pisa.
A simple Turtlebot robot is used to navigate the corridor in straight paths (one-
way) of approximately 20m in length. Ground truth localization is collected by a
localization and mapping software using an RGBD Kinect camera, for a total of
12 sequences. The Stella benchmark comprises 10 anchors and a mote deployed
on two corridors of the Stella Maris Children Hospital, in Pisa. A commercial
Robotnik AGVS robot [6] is used to perform L-shaped paths (both-ways) of ap-
proximately 40m. Ground truth localization data is collected by an high-quality
laser-based localization system, for a total of 17 sequences. Feature selection is
fundamental for these tasks even if the number of input features is not large, as
a reduction of ESN inputs entails the deployment of less anchors (cost saving),
of less radio channels towards the mote (battery saving), and a minor use of
computational resources on the mote hosting the ESN (resource saving).

Experiments have been performed by extracting 4 sequences from each dataset
to constitute the out-of-sample test. The remainder of the samples has been
used in a 4-fold CV procedure for both model hyperparameter selection and
within the feature selection process for feature subset scoring. The tested model
configurations include the reservoir size NR ∈ {50, 100, 200, 500} and the leaky
parameter a ∈ {0.05, 0.1, 0.2}. Readout weights are trained by ridge regression
with the regularization parameter λ selected from {0.001, 0.01, 0.1, 1} also in the
4-fold CV. Table 1 shows the test results for the model selected configurations
of EHC, HC and for a baseline case using all original features (also subject to
model selection). On Turtle data, EHC yields to a lower localization error than
HC for the same feature subset size, with 2 selected features common to both
algorithms. Notably, EHC test error is not significantly different than that ob-
tained by the baseline method using all the original 5 features, whereas EHC uses
only 3 features. The EHC algorithm has also significantly lower computational
requirements with respect to HC, completing the feature selection process with
66% of time required by the HC method. On the Stella data, the localization
performance of EHC and HC is basically equivalent (no statistically significant
difference in the test error), however EHC obtains this result using only 5 fea-
tures (i.e. 50% of the original), while HC ultimately selected 7 features. Again,
the computational requirements of the EHC method are considerably lower than
that of HC, with a reduction of 39% of the time required to complete the feature
selection process. Note that the clear difference in the localization performance
between the Turtle and Stella data has to be ascribed to the quality of the
ground-truth localization data that, in the latter case, is obtained through an
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accurate commercial laser-based system, while in the former case is obtained by
an open-source research software using a low-cost RGBD camera. Nevertheless,
both results are in line with, or better than, the performances of RSSI-based
localization in literature, see [7] for a recent review.

Dataset Full ESNigma-HC HC
Etst #F Etst Time #F Etst Time #F

Turtle 1.17 (0.26) 5 1.20 (0.54) 38.58 3 1.57 (0.41) 57.13 3

Stella 0.42 (0.08) 10 0.49 (0.08) 49.39 5 0.47 (0.03) 80.96 7

Table 1: Results on the Turtle and Stella datasets: Etst is the mean Euclidean
test error (in meters) with variance (in brackets), completion time (in minutes)
and number of selected features. Full denotes a model using all original features.

4 Conclusion

We have introduced a wrapper algorithm designed explicitly for feature selec-
tion in Echo State Networks. In particular, we have proposed a novel score
(ESNigma) that computes a feature ranking from the ESN weights, allowing to
identify candidate feature subsets while reducing the need to retrain the neu-
ral model, as in wrapper approaches in literature. The experimental compar-
ison with an hill-climbing wrapper from literature provides evidence that the
ESNigma score allows to reduce the computational cost of computing feature
selection of more than one-third. At the same time, ESNigma seems capable
of identifying more compact feature subsets, while maintaining comparable pre-
dictive performance. The proposed ESNigma approach is general and can be
applied to more refined search policies, such as those employing backtracking
and stepwise elimination [5], which will be subject of future research.
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