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Abstract. Due to the recent financial crisis, several systemic risk mea-
sures have been proposed in the literature for quantifying financial system-
wide distress. In this note we propose an aggregated Index for financial
systemic risk measurement based on EOF and ICA analyses on the several
systemic risk measures released in the recent literature. We use this index
to further identify the states of the market as suggested in Kouontchou et
al. [7]. We show, by characterizing markets conditions with a robust Ko-
honen Self-Organizing Maps algorithm that this measure is directly linked
to crises markets states and there is a strong link between return and
systemic risk.

1 Introduction

Following the experience of the recent 2007-2009 financial crisis, a special at-
tention has been paid to the “macroprudential” regulation, i.e. the prevention
of a financial system-wide distress that can adversely impact the real economy.
For this purpose, several systemic risk measures have been developed since 2010.
Some of the most important described in Bisias et al. [2], and Giglio et al. [4]
include the Conditional Value-at-Risk (CoVaR), the Delta Conditional Value-at-
Risk (∆CoVaR) and the Marginal Expected Shortfall (MES). Other important

∗We thank Gregory Jannin, Alexandre Jasinski, Alejandro Modesto and Alexandre Mous-
tacchi for an excellent research assistance. The fifth author thanks the support of the Risk
Foundation Chair Dauphine-ENSAE-Groupama “Behavioral and Household Finance, Indi-
vidual and Collective Risk Attitudes” (Louis Bachelier Institute) and all authors acknowledge
the support by the Global Risk Institute (www.globalriskinstitute.com). Some extra materi-
als related to this article can be found at: www.systemic-risk-hub.org. The usual disclaimer
applies.

543

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



measures are the SRISK from Brownlees and Engle [3] and the Component Ex-
pected Shortfall (CES) from Banulescu and Dumitrescu [1].

However, these measures are focused on different aspects of financial risk,
such as leverage, kurtosis or skewness, and thereby the comparison of two firms
may present dissimilar results according to the chosen measure. In this paper,
following the intuition of Giglio et al. [4], we aim to create an aggregated index
able to identify the main systemic risk factors through the study of 16 systemic
risk measures applied to American securities. We will first try to identify the
link between this index and the market states as suggested in Kouontchou et
al. [7] by using the neural network classification algorithm corresponding to the
Self-Organizing Maps (SOM) in its robust version of Guinot et al. [5], known
as R-SOM. We will then apply an Empirical Orthogonal Function Analysis on
the selected measures, which will allow us to establish an index based on the
so-called Empirical Orthogonal Functions and their respective weights. Then,
following the same intuition, we construct the aggregated index by applying an
Independent Component Analysis. Our results confirm the findings in Giglio et
al. [5] that when the measures are studied as a whole, they contain important
predictive information about future macroeconomic outcomes.

2 Identifying the Link between Markets States and the
Systemic Risk Measures

The classification by robust Kohonen maps aims to identify the correlation be-
tween the Systemic Risk Measures and the shape of the financial market.

2.1 R-SOM Algorithm and American Stock Market Index

In this part, we analyze a data set composed of 95 financial institutions in
American Stocks Market, each of which are measured by 6 systemic risk mea-
sures (VaR, CoVaR, MES, ∆CoVaR, SRISK, CES) at the individual firm level,
evaluated on a daily basis from the 28th of March, 2003 to the 28th of June
2014.

We use for understanding the markets states the R-SOM algorithm proposed
by Guinot et al. [5]. This approach provides a two-step stochastic method based
on a bootstrap process to increase the reliability of the underlying neighbourhood
structure. The increase in robustness is relative to the sensitivities of the output
to the sampling method (see Guinot et al. [5], Kouontchou et al. [7], Olteanu
et al. [8] and Sorjamaa et al. [9]). Figure 1 shows the codevectors of the [4x4]
classes of the R-SOM algorithm, and the average line of value of each class in
order to compare the values of these codevectors. Each class represents different
dates for systemic risk measures of financials institutions.

In figure 2, we compute the performance of the MSCI US Index on the periods
corresponding to the different systemic risk classes obtained with the R-SOM
algorithm. In order to have a relevant idea of the evolution of the MSCI US, we
only consider classes which contain at least 5% of the initial samples (i.e. classes
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that contain more than 86 samples dates).

Fig. 1: Codevectors of the systemic risk classes obtained with the R-SOM algorithm.

Figure 2 confirms that the MSCI US Index is significantly decreasing over
the periods of classes 14 and 15, whereas it is increasing over the other periods.
If we compare these results to the former figure, we note that classes 14 and 15
codevectors are lower than those of classes 3, 4, 9 and 16; this comparison thus
underlines the link between the systemic risk meausres and the evolution of the
MSCI: a fall of the MSCI Index is associated with a lowering of the codevectors
of the R-SOM algorithmm.

Fig. 2: MSCI US performance over the periods corresponding to the systemic risk

classes of the R-SOM algorithm.

2.2 Characterizing Market Conditions with the Systemic Risk Mea-
sures

We now focus on the link between the systemic risk measures through the R-
SOM algorithm, and the market states defined above. With the same principle
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as in Figure 2, we represent on Figure 3 the part of each Market State for the 6
classes of the R-SOM algorithm that contain more than 5% of the initial samples.

Fig. 3: Market states over the periods associated with the systemic risk classes.

In Figure 3, we clearly note that classes 14 and 15 are exclusively composed
of samples which dates are associated with market state 4, whereas the other
classes match more with States 1, 2 and 3 which stand for periods of growth of
the market. Figure 2 and 3 thus confirm the correlation between the systemic
risk measures and the state of the financial market: a decrease of the values of
the codevectors is associated with a decrease of the MSCI World, and an increase
of the Market State. This correlation is also described in the folowing section
with the construction of the Index of Systemic Risk Measures (ISRM).

3 Empirical Orthogonal Functions

The Empirical Orthogonal Function (EOF) analysis is a decomposition of a data
set in terms of orthogonal basis functions which are determined from the data.
The EOF method is thus used to analyse the variability of a single field, and can
allow afterwards to denoise the initial data. If we consider a (n, p) Matrix M of
initial data, corresponding in our case to p time series of systemic risk measures,
the algorithm is constructed as follows: after removing the mean value from each
of the time series (i.e. each column of M), The covariance matrix C of M is
formed. The next step consists then in solving the eigenvalue problem:

CR = RΛ, (1)

where R is a matrix of eigenvectors of covariance matrix C, and Λ is a diagonal
matrix containing the eigenvalues of C. Assuming that Λ is ordered according
to the size of the eigenvalues, the eigenvectors associated to those eigenvalues
are the EOF we are looking for.
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Since the EOF methodology is based on second order moments only, it lacks
information on higher order statistics. A different technique for data analysis
called Independent Component Analysis (ICA) takes into account higher order
moments and exploits inherently non-Gaussian features of the data.The goal of
ICA is to minimize the statistical dependence between the basis vectors. This
can be written as:

M = As, (2)

where A is an unknown matrix called the mixing matrix and M , s are the two
vectors representing the observed signals and source signals respectively. The
objective is to recover the original signals, s, from only the observed vector of zero
mean M . We obtain estimates for the sources by first obtaining the “unmixing
matrix” W , where, W = A−1. This enables an estimate, of the independent
sources to be obtained:

s = WM, (3)

We thus construct an aggregated Index, which we will name Index of Systemic
Risk Measures (ISRM). In a first step, we calculate this index based on a EOF
Analysis, where each orthogonal function is weighted by the part of variance that
it represents, i.e. by the percentage of the eigenvalue associated to the orthogonal
function. In a second step, following the same intuition, we calculate the index
based on an Independent Component Analysis using the algorithm FastICA by
Hyvärinen and Oja [6]. Note that since there is no order of magnitude in the
ICA methodology, the independent components are equally weighted for the
construction of the index. Figure 4 displays the results obtained with the two
methodologies, along with the Market Crises (state 4 of the market).

Fig. 4: Index of Systemic Risk Measures and crisis periods.

Figure 4 clearly shows a corresponding increase of the ISRM using both
methodologies during the crisis periods.
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4 Conclusion

Through the analysis of different Systemic Risk Measures computed for different
firms, we have been able to build an Index based on mathematical algorithms
relying on the variance and higher order moments between these different mea-
sures, which ties in the evolution of the financial market. This has been con-
firmed by the simultaneity between the significant rise of our Index and the
Market State 4, corresponding to crisis periods. The comparison of the varia-
tions of the systemic risk measures and of the MSCI US also shows that they
are globally opposite, which confirms the relevance of the Index towards the
evolution of the financial market.
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