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Abstract. In this paper, we introduce an incremental dimensionality
reduction approach for labeled data. The algorithm incrementally sam-
ples in latent space and chooses a solution that minimizes the nearest
neighbor classification error taking into account label information. We
introduce and compare two optimization approaches to generate super-
vised embeddings, i.e., an incremental solution construction method and
a re-embedding approach. Both methods have in common that the objec-
tive is to minimize the nearest neighbor classification error computed in
the low-dimensional space. The resulting embedding is a surrogate of the
high-dimensional labeled set. The set allows conclusions about the data
set structure and can be used as preprocessing step for classification of
labeled patterns.

1 Introduction

Dimensionality reduction is the task to find a mapping from a high-dimensional
space Rd to a low-dimensional space Rq maintaining most of the high-dimensional
characteristics. Often, not an explicit mapping f : Rd → Rq is computed, but
low-dimensional counterparts Z = [z]Ni=1 for high-dimensional patterns X =
[x]Ni=1. Based on unlabeled data, dimensionality reduction (DR) methods try to
represent the intrinsic structure of the data space. Supervised embeddings can
be used for visualization and as pre-processing method for supervised learning,
i.e., classification and regression.

In this paper, an approach is presented that places low-dimensional patterns
based on label information. Label information is an excellent indicator for clas-
sification and regression methods. The idea of supervised embeddings is to find
a low-dimensional set of latent representations for a high-dimensional set of pat-
terns that has similar characteristics with respect to an employed supervised
learning method. With such an approach, the characteristics of the data space
are mapped to the latent space w.r.t. the properties the supervised method is
able to represent. We will use k-nearest neighbor (kNN) classifiers to map from
latent space to label space for maintaining neighborhod information. The opti-
mization criterion to minimize the kNN error induces kNN neighborhoods with
correct label information.

The incremental approach will be introduced in Section 2, while the re-
embedding approach is presented in Section 3. After discussion of related work in
Section 4, the approaches are experimentally analyzed in Section 5. Conclusions
are drawn in Section 6.
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2 Incremental Solution Construction

In this section, we introduce an incremental DR method based on the classifi-
cation accuracy criterion for labeled data sets. If patterns xi carry a label yi,
the classification error in latent space Rq can be used for the embedding pro-
cess. Optimizing w.r.t. the classification error is further motivated by the fact
that DR methods are often employed as preprocessing methods in classification
setups. The incremental supervised embedding (incSE) algorithm constructs a
solution pattern by pattern. The mechanism can be described inductively, also
see Figure 1 for the pseudocode of the incSE. We have given patterns X = [x]Ni=1

with assigned labels y = (y1, . . . , yN ). The first pattern x1 is embedded at an ar-
bitrary latent position, e.g., at the origin z1 = 0. This results in a latent matrix
Z = [z1] and a corresponding pattern matrix X = [x1]. Let x1, . . . ,xn be the
sequence of embedded patterns with corresponding latent positions z1, . . . , zn.
Pattern xn+1 with n + 1 ≤ N is embedded by first searching for the closest
embedded pattern

x∗ = arg min
x=x1,...,xn

‖xn+1 − x‖2 (1)

of pattern matrix X = [xj ]
n
j=1. Based on its latent position z∗, κ candidate

latent positions z∗1, . . . , z
∗
κ are sampled using the Gaussian distribution

z∗l = z∗ + ẑl (2)

for l = 1, . . . , κ with ẑl ∼ N (0, σ). The distance σ = ‖xn+1 − x∗‖ between pat-
tern xn+1 that has to be embedded, and the closest embedded pattern x∗ is em-
ployed as standard deviation of the Gaussian sampling. This allows the preserva-
tion of distances between patterns in latent space.

Algorithm 1: incSE
Require: X, y, k, κ
1: Z = [0], X = [x1]
2: for i = 2 to N do
3: choose xi
4: select closest pattern x∗ with latent

position z∗

5: for l = 1 to κ do
6: z∗l ∼ σ · N (z∗, 1) with

σ = ‖xi − x∗‖2
7: end for
8: choose

zi = arg minz=z∗1 ,...,z
∗
κ
E(Zn+1)

9: Z = [Z, zi], X = [X,xi]
10: end for
11: return Z

Fig. 1: Pseudo-code of incremental
approach incSE

From the κ candidate latent positions,
the one leading to the lowest classifica-
tion E(·) error is selected

zn+1 = arg min
z=z∗1 ,...,z

∗
κ

E(Zn+1), (3)

which is defined as

E(Zn+1) =
n+1∑
i=1

‖fq(zi)− yi‖2, (4)

where fq(·) is the classifier mapping from
latent space Rq to label space. Alter-
natively, the objective can be to main-
tain the classification behavior of the
high-dimensional patterns E′(Zn+1) =∑N
i=1 ‖fq(zi) − fd(xi)‖2, where fd(·)

maps from the original data space to the
label space. The stochastic embedding with Gaussian sampling is similar to un-
supervised nearest neighbors [8], which consideres the data space reconstruction
error of unsupervised regression [5].
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3 Re-embedding

As closely related alternative to incSE, we compare to a supervised re-embedding
approach (reSE) that improves an existing embedding w.r.t. the low-dimensional
classification error, see Figure 2. The re-embedding approach randomly se-
lects one or more points and embeds them at a better latent position leading
to a reduced error E(·). First, a complete embedding Z must be available.
The initial Z can be generated randomly or can be a result of incSE and

Algorithm 2: reSE
Require: X, y, Z
1: repeat
2: Randomly choose z∗ from Z
3: z′ = z∗ +N (0, σ)
4: if E(Z′) < E(Z) then
5: z∗ = z′ for Z
6: end if
7: until termination condition
8: return Z

Fig. 2: Pseudocode of re-embedding
approach reSE

other embedding algorithms such as prin-
cipal component analysis (PCA), locally
linear embedding (LLE) [10] or isometric
mapping (ISOMAP) [12]. A pattern z∗ is
randomly chosen from Z. With Gaussian
sampling, see Equation 2, the latent posi-
tion of the pattern is randomly changed.
The change is accepted, if the error E(Z′)
of the re-embedding manifold Z′ is lower,
i.e., if E(Z′) with Z′ containing z∗ = z′.
The algorithm proceeds until a termina-
tion condition is fulfilled.

4 Related Work

A method for supervised dimensionality reduction is linear discriminant analysis
(LDA) [1], which seeks for a transformation matrix such that the between-class
scatter is maximized and the within-class scatter is minimized. Sugiyama [11]
combines LDA with locality-preserving projection, which is well appropriate on
multimodal data and requires the solution of a generalized eigenvalue problem.
Related methods for embedding labeled data are discriminant adaptive nearest
neighbor (DANN) [3], mixture discriminant analysis (MDA) [4], and neighbor-
hood component analysis (NCA) [2]. MDA is based on a mixture discrimi-
nant analysis that extends LDA to maximum likelihood estimation of Gaus-
sian mixture distributions. Related to incSE is unsupervised nearest neighbors
(UNN) [6]. UNN is based on the unsupervised regression framework that maps
from the low-dimensional space to data space. Nearest neighbor regression is
used for this mapping. The variant that is able to map into latent spaces of
arbitrary dimensionalities 1 ≤ q < d is based on stochastic embeddings, similar
to the Gaussian sampling of incSE. A kernel variant [7] extends the flexibility
of UNN.

5 Experimental Analysis

In the following, we experimentally analyze and compare incSE and reSE on
a benchmark data sets w.r.t. the kNN classification error, when mapping from
latent space to label space. incSE is incrementally constructing the manifold,
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while reSE starts from a random initialization and reSEiso from an initial
embedding computed by ISOMAP. Each experiment is repeated 50 times and
the mean and the corresponding standard deviation are shown in Table 1. Both
reSE variants employ 10,000 re-embedding steps. On the MakeClass data set,

Table 1: Comparison of kNN classification error E when mapping from latent
space to label space with incSE, reSE with random initialization, reSEiso with
ISOMAP initialization, and LDA with q = 2 to native kNN in the original data
space. Each stochastic experiment is repeated 50 times.

data kNN incSE reSE reSEiso LDA

MakeClass 0.050 0.059 ± 0.012 0.088 ± 0.009 0.089 ± 0.008 0.121
Digits 0.012 0.102 ± 0.026 0.413 ± 0.011 0.136 ± 0.007 0.400
Faces 0.341 0.300 ± 0.012 0.301 ± 0.010 0.301 ± 0.010 0.259
Blobs 0.050 0.086 ± 0.028 0.085 ± 0.010 0.012 ± 0.002 0.045
Friedman 1 19.800 7.604 ± 1.022 4.022 ± 0.278 4.240 ± 0.454 7.437
Friedman 2 18.029 6.534 ± 0.672 3.715 ± 0.237 4.202 ± 0.389 6.647
Wind 3.503 3.460 ± 0.662 11.633 ± 0.824 1.729 ± 0.125 3.755
Housing 0.050 0.086 ± 0.028 0.085 ± 0.010 0.012 ± 0.002 0.032
Fitness 0.361 0.427 ± 0.029 0.278 ± 0.035 0.283 ± 0.012 0.599

incSE performs better than reSE and reSEiso. Here, reSE is even slightly
better than reSEiso, but not statistically significant. On Digits, incSE again
outperforms both reSE variants, but reSEiso is better than reSE. All three
variants show approximately the same behavior on the Faces data set, while
reSEiso outperforms reSE and incSE on the Blobs data set. The same sit-
uation can be observed on the Housing data set. In case of regression problem
Friedman 1, it is interesting to observe that the achieved errors from the low-
dimensional spaces are lower than the kNN error in data space. reSE achieves
the best embedding, while reSEiso is competitive and incSE is significantly
worse. This also holds for Friedman 2. A different behavior can be observed
on the NREL wind data. While the method incSE achieves a slightly smaller
error than the data space error, it is outperformed by reSEiso. But reSE fails
with a large MSE. Both incSE variants show better results than incSE on the
Fitness data set and achieve values that are better than the original regression
error. The comparison to LDA shows that LDA is outperformed on MakeClass
and Digits by all other methods, while showing superior results on the Faces
data set. On the Blobs data set, LDA achieves better results than kNN and
incSE, but worse than reSE.

In the following, the embeddings of incSE and reSE are compared visually.
For the tests, we employ the data set Digits with N = 500 patterns and the Blobs
data set based on generating Gaussian distributed patterns. For classification
in latent space, we employ kNN with neighborhood size k = 20. Figure 3(a)
shows the embedded patterns of Digits with incSE. Patterns from different
classes are clearly separated and are neighboring to each other. An initialization
with ISOMAP and post-processing with reSE also yields an accurate latent
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(a) incSE on Digits (b) reSEiso on Digits
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(c) incSE on Blobs
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(d) reSEiso on Blobs
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(e) incSE on Wind
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Fig. 3: incSE and reSE variants on the benchmark problems Digits, Blobs,
Wind, and Fitness.

neighborhood with low kNN errors, see Figure 3(b) and Table 1.
Figure 3(c) shows the embedding of the Blobs data set with incSE, Fig-

ure 3(d) shows the corresponding results of reSEiso. Similar to the results
on Digits, incSE computes smooth embeddings with reasonable neighborhoods
between patterns of same classes. The high accuracies, see Table 1, confirm the
results. The initialization with ISOMAP with post-processing via re-embedding
well separates all three classes. The visualization of incSE on the wind data,
see Figure 3(e) shows that wind situations with similar labels (wind in the fu-
ture) form neighborhoods that have a cluster-like shape. Figure 3(f) shows the
result of incSE embedding on the Fitness data set. The small path of points
from left to right with the agglomeration of points in the right part of the figure
illustrate the optimization process that converges towards the optimum. Such
visualizations of optimization processes can help the practitioner to analyze the
fitness landscape and the corresponding search process.

6 Conclusions

The supervised embedding method incSE allows the embedding of high-dimen-
sional patterns into low-dimensional latent spaces. Using the label information
for the embeddings allows an efficient computation of the low-dimensional rep-
resentations. Two algorithmic variants have been introduced. incSE and re-
SEiso have been the most successful variants with respect to numerical results
and visual inspection of exemplary embeddings. Due to the nearest neighbors
search for each pattern, the complexity of incSE is O(N2). The proposed
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algorithms can be used for visualization and as preprocessing of classification
methods. Various extensions are possible to use the low-dimensional represen-
tations for classification. One promising approach might be to determine the
closest pattern x∗ of x′ in data space, and to employ kNN in latent space to
determine the label of x′. Another idea is to embed the pattern x′ based on the
data space reconstruction error, oriented to unsupervised regression [5].
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A Benchmark Problems
MakeClass is a classification data set generated with the scikit-learn [9] method make classification
with d dimensions and two centers. The UCI Digits data set comprises handwritten digits with
d = 64. The Faces data set is called Labeled Faces in the Wild and has been introduced for
studying face recognition problems, see http://vis-www.cs.umass.edu/lfw/. The Blobs data set is
generated with the scikit-learn [9] method make blobs with two classes and a standard deviation of
σ = 10.0. Friedman 1 and Friedman 2 are regression problems generated with scikit-learn. The
Wind data set is based on spatio-temporal time series data from the National Renewable Energy
Laboratory (NREL) western wind data set comprising 32,043 wind turbines, each holding ten 3 MW
turbines over a timespan of three years in a 10-minute resolution. The dimensionality is d = 22.
The Housing data set, also known as California housing from the StatLib repository comprises
20640 8-dimensional patterns and one label. Fitness is data set based on an optimization run of a
(15+100)-evolution strategy on the Sphere function f(x) = xTx with d = 20 dimensions and 21000
fitness function evaluations.
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