
SMO Lattices for the Parallel Training of
Support Vector Machines

Markus Kächele, Günther Palm and Friedhelm Schwenker ∗

Ulm University - Institute of Neural Information Processing
89069, Ulm - Germany

Abstract. In this work, a method is proposed to train Support Vector
Machines in parallel. The difference to other parallel implementations is
that the problem is decomposed into hierarchically connected nodes and
that each node does not have to fully optimize its local problem. Instead
Lagrange multipliers are filtered and transferred between nodes during
runtime, with important ones ascending and unimportant ones descending
inside the architecture. Experimental validation demonstrates the advan-
tages in terms of speed in comparison to other approaches.

1 Introduction

One of the most important tasks in data mining and machine learning is the
classification of data into a set of given classes. Classification algorithms have
far reaching application and devices that implement them have already started
to be part of our life – be it as face detectors in cameras or smartphones, speech
analysis, or by automatically supporting medical diagnoses such as the severity
of depression [1]. In recent years, many classification algorithms have been
proposed but still one of the most popular and most widely used classifiers is the
Support Vector Machine (SVM) [2]. Very appealing theoretical characteristics
such as the maximum margin property render it a practitioners first choice.
However, there are also drawbacks such as the relatively high training complexity
that render it especially for large scale problems impractical. Many researchers
proposed solutions to these problems in the form of iterative algorithms [3, 4] or
by breaking up the problem into smaller subproblems that are easier to solve [5].
In this work, a method is presented to train an SVM in parallel by decomposing
the training set into smaller subsets. By taking individual optimization steps for
the subproblems using the Sequential Minimal Optimization (SMO) algorithm
[4], potentially important Lagrange multipliers are filtered and passed along a
hierarchy to take their part in the solution of the whole problem.

This work is organized as follows: In the next Section, a short overview of
SVMs and the SMO algorithm is given. The proposed approach is presented in
Section 3 followed by experimental validation in Section 4. The work is concluded
by a discussion and a summary of the presented ideas.

∗This paper is based on work done within the Transregional Collaborative Research Centre
SFB/TRR 62 Companion-Technology for Cognitive Technical Systems funded by the German
Research Foundation (DFG). Markus Kächele is supported by a scholarship of the Landes-
graduiertenförderung Baden-Württemberg at Ulm University.

579

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

2 Background

Training of an SVM involves solving the convex optimization problem:

max
α

L(α) =
∑
i

αi −
1

2

∑
ij

αiαjyiyjK(xi, xj) (1)

with Lagrange multipliers αi under the constraints 0 ≤ αi ≤ C and
∑

i αiyi = 0.
x{i,j} and y{i,j} denote data points and labels, respectively. Standard quadratic
programming (QP) methods can be utilized for solving Equation 1, however
their complexity is too high for large datasets. Therefore, other algorithms
have been developed that solve this task iteratively, such as Platt’s SMO [4].
Based on the decomposition scheme by [3], the algorithm selects two Lagrange
multipliers, solves the QP subproblem analytically and repeats the process until
convergence is achieved. Convergence is achieved if a solution is found that
fulfills the Karush-Kuhn-Tucker (KKT) conditions:

αi = 0⇔ yi(〈xi, w〉+ b) ≥ 1

0 < αi < C ⇔ yi(〈xi, w〉+ b) = 1

αi = C ⇔ yi(〈xi, w〉+ b) ≤ 1

Here w and b denote the parameters of the hyperplane. By iteratively pick-
ing pairs that violate these conditions and optimizing them, SMO constructs a
solution in which no violations occur and the global optimum is reached.

3 Lattices of SMO Nodes

The proposed approach builds on the decomposition of the data into indepen-
dent subsets allowing their distribution to independent working nodes, which
can naturally run in parallel. Each node contains an instance of the SMO al-
gorithm and solves the problem for its subset. The workflow is composed of
the two alternating phases SMO computation and inter-node communication.
Periodically, inter-node communication steps are introduced to exploit the gath-
ered knowledge of the computation phase by transferring filtered multipliers to
connected nodes. Here, the architecture of the nodes is organized in a hierar-
chy with a varying degree of importance of a node depending on its level in the
hierarchy. The local importance of the multipliers is estimated and important
ones are passed to the upper nodes (i.e. parent), while unimportant ones are
either kept or passed to lower nodes (children). The communication of the nodes
is restricted to their parent and child nodes (apart from specific cases, see Sec-
tion 4). The idea is that during the process, the support vectors will ascend in
the hierarchy and finally reach the top node. The top node periodically checks
if the KKT conditions for the whole problem are fulfilled, indicating that an
optimal solution for the problem has been found. The idea to hierarchically
filter for support vector candidates has already been employed in other works

580

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

...

...

...

...

Fig. 1: Two possible architectures. Architectures can have arbitrary structure
as long as there is a top node. The dashed line indicates the connection between
the bottom and the top of the architecture (see ”wrap around”).

such as [5, 6]. While somewhat similar to this work, the unique characteristic
of the presented approach is that it is not necessary to iteratively solve whole
(sub-)optimization procedures, instead only a single node, the top node, will
optimize until convergence.

3.1 Architecture setup

In Figure 1 two example architectures are illustrated. The bold outline indicates
the importance of the node (depending on the level). The architectures are
organized such that a parent node integrates the local information obtained
from the subsets contained in its child nodes. The black arrows denote the
communication paths of the nodes. The upwards path is reserved for potentially
important multipliers (i.e. those that are relevant for the current subproblem),
while the downward paths are for the ones, that do not seem to be important
for the optimization. Depending on the local filter results, a node will pass
multipliers to the parent and child nodes and in turn will receive multipliers
from its parent and child nodes. Architectures do not have to comply to the two
presented designs in Figure 1 as long as there is a node that optimizes for the
KKT conditions of the whole problem (the so called top node).

For reasons grounded in theoretical considerations and convergence issues,
the two following modifications are introduced:

• Wrap-around: To maintain a closed circle and to prevent that multipliers
will sediment to the bottom of the architecture with no way up again the
connection from the leaf nodes to the top node is made (as indicated by
the dashed line in Figure 1).

• Sweeping: The movement direction (naturally either up or down) can
only be changed in the top or leaf nodes. That means that once either
direction is chosen, a multiplier will continue to take this direction until
it either reaches the top node (directly or by wrap-around) or it reaches a
leaf node, where the direction can be inverted to make its way up again.

581

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

3.2 Theoretical considerations

In this Section, some insights into the theoretical setup of the approach will be
presented. The validity of the presented approach is based on the following key
assumptions:

1. Fulfilling the KKT conditions is a necessary and sufficient condition [4].

2. By adding and optimizing for a KKT-violating pair αi, αj an optimal so-
lution of a subset αS can be extended such that the value of the objective
function will be increased: L(αS∪{i,j}) > L(αS) [3, 7].

Since the local behaviour does not reflect the global importance of a sample,
measures have to be introduced to allow the non-greedy selection of samples and
therefore enable convergence to the global optimum.

By combining assumption 1 and the fact that the top node checks for the
fulfillment of the conditions for the whole problem and not only for its subprob-
lem it follows that the algorithm will converge if all of the necessary Support
Vectors will be accessible in the top node.

To get there, from each node, the locally important multipliers are handed
to the parent nodes. However, there is no guarantee, that the greedy selection
will suffice. Cases can occur in which the top node cannot progress any further
because a necessary violating multiplier is hidden in the depths of the architec-
ture, trapped in a constellation in which it is not handed over to higher levels
because of its seeming unimportance. To overcome such issues, the aforemen-
tioned sweeping procedure is used. After a number of iterations without im-
provement in the top node, sweeping is utilized to change the otherwise greedy
strategy of the nodes to one that forces new samples to the top node. For each
multiplier, sweeping is turned off after having been examined once by the SMO
in the top node. Note that a formal proof of convergence will still have to be
presented, however the experiments suggest that globally optimal solutions are
indeed achieved using these procedures.

4 Experimental Validation

For the validation of the proposed approach, a comparison with related algo-
rithms such as CascadeSVM (CSVM) [5] and Distributed Parallel SVM (DPSVM)
[6] is carried out on a number of datasets. The experiments are set up such
that the dataset is fixed and variations are introduced by different architecture
settings and initializations. As DPSVM is a more generalized version of Cas-
cadeSVM (see [6] for details) and both operate similarly, the comparisons will
be conducted using this algorithm with different architecture settings.

For the experiments the two datasets breast cancer (from the UCI reposi-
tory1) and ring (artificially generated concentric rings) are used. The architec-
tures as depicted in Figure 1 are trained and compared. Each of the approaches

1http://archive.ics.uci.edu/ml/

582

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

SMO-L
(cascade)

DPSVM
(cascade)

SMO-L
(chain)

DPSVM
(chain)

2

4

6

8

10

ti
m

e
(s

ec
o
n
d
s)

breast dataset, 6 nodes

SMO-L
(cascade)

DPSVM
(cascade)

SMO-L
(chain)

DPSVM
(chain)

0

500

1,000

1,500

2,000

2,500

ti
m

e
(s

ec
o
n
d
s)

ring dataset, 6 nodes

Fig. 2: Training time comparison. In both cases SMO-L is faster than DPSVM.
It can be observed that the time gap between the algorithms increases drastically
with larger training sets (breast cancer has 580 and ring 2000 samples).

uses a setup with 6 nodes with the data being randomly split among them. All
the architectures (also DPSVM) are closed loops (i.e. with wrap-around). Both
architectures were trained until convergence up to a tolerance of ε = 0.0001. As
DPSVM has no such thing as a top node, in each iteration, the convergence of
every node is tested and if any of the nodes converged, the training is stopped
(as opposed to the original paper in which convergence is stated as all nodes
have converged). For SMO-L, two additional modifications are introduced: A
variable iteration length, that increases over time to favor many quick multi-
plier exchanges in the beginning and optimization for the exact values in the
later run of the algorithm. The second modification is the so called early out
heuristic, which allows the top node to instantaneously gather every violating
sample from anywhere inside the architecture. It is used if convergence has al-
most been achieved (i.e. when only a few percent of the KKT conditions are
violated). Each training run has been repeated 10 times with random initializa-
tion to ensure validity. The time utilized for training is measured and plotted
for each training set and architecture. The results are illustrated in Figure 2. A
comparison between the number of iterations it took to converge can be seen in
Figure 3. As can be seen, the SMO-L approach clearly outperforms DPSVM for
both architecture sets and both datasets while converging to the same solution.

5 Conclusion

In this work, a method has been presented to train an SVM based on itera-
tively filtering Lagrange multipliers based on their relative importance in the
optimization function. The key aspects of the algorithm are that multiple nodes
can be combined to build a filter hierarchy and that all of them can be run in
parallel. Inter-layer communication and propagation of multipliers assure that

583

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

0 2000 4000 6000 8000 10000 12000 14000
0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Fu
lfi

lle
d
 K

KT
 c

o
n

d
it

io
n
s

(f
ra

c.
)

Runtime comparison

Fig. 3: Comparison of number of iterations. As SMO-L does not require to
completely converge each SMO sub-algorithm, much fewer iterations are needed
(for SMO-L the optimal solution is reached after 2570 iterations). The red lines
indicate the iterations of each step in the DPSVM algorithm. The compared
architectures were chains with 6 nodes each. The red stars indicate points where
the early out heuristic has been used.

relevant information is passed from nodes to nodes in different layers where the
information is used to compute an optimization step before weight adaptations
take place and the updated information is provided for the other layers. It has
been shown that the performance of the proposed method is comparable with
established approaches.

There is a multitude of possibilities for future work. The most interesting
point would be an in-depth theoretical analysis of the convergence properties.
Other directions could include investigations to analyze the initialization phase
(e.g. use of overlapping subsets or cluster-based initialization). Also a focus
could be set on additional heuristics for the acceleration or stabilization of the
algorithm.

References

[1] Markus Kächele, Martin Schels, and Friedhelm Schwenker. Inferring Depression and Affect
from Application Dependent Meta Knowledge. In Proceedings of the 4th International
Workshop on Audio/Visual Emotion Recognition, AVEC ’14, pages 41–48. ACM, 2014.

[2] Vladimir N. Vapnik. Statistical Learning Theory, volume 2. Wiley, 1998.

[3] Edgar Osuna, Robert Freund, and Federico Girosi. An improved training algorithm for
Support Vector Machines. In Proceedings of the IEEE Workshop on Neural Networks for
Signal Processing, pages 276–285, Sep 1997.

[4] John C. Platt. Fast Training of Support Vector Machines using Sequential Minimal Op-
timization, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[5] Hans Peter Graf, Eric Cosatto, Léon Bottou, Igor Dourdanovic, and Vladimir Vapnik.
Parallel Support Vector Machines: The Cascade SVM. In NIPS, 2004.

[6] Yumao Lu, Vwani Roychowdhury, and Lieven Vandenberghe. Distributed Parallel Sup-
port Vector Machines in Strongly Connected Networks. IEEE Transactions on Neural
Networks, 19(7):1167–1178, July 2008.

[7] S. Sathiya Keerthi and Elmer G. Gilbert. Convergence of a Generalized SMO Algorithm
for SVM Classifier Design. Machine Learning, 46(1-3):351–360, Mar 2002.

584

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

	papers1-10
	ESANN2015-68_2
	ESANN2015-88_3
	ESANN2015-35_2
	ESANN2015-26_3
	ESANN2015-100_3
	ESANN2015-73_4
	ESANN2015-15_9
	ESANN2015-27_4
	ESANN2015-65_12
	ESANN2015-33_6

	papers11-20
	ESANN2015-118_2
	ESANN2015-31_3
	ESANN2015-39_3
	ESANN2015-54_5
	ESANN2015-56_3
	ESANN2015-91_4
	ESANN2015-12_3
	ESANN2015-77_3
	ESANN2015-107_2
	ESANN2015-81_2

	papers21-30
	ESANN2015-135_2
	ESANN2015-125_3
	ESANN2015-90_4
	ESANN2015-23_5
	ESANN2015-126_2
	ESANN2015-29_2
	ESANN2015-67_2
	ESANN2015-2_2
	ESANN2015-13_2
	ESANN2015-52_8

	papers31-40
	ESANN2015-104_3
	ESANN2015-83_2
	ESANN2015-114_4
	ESANN2015-14_2
	ESANN2015-130_2
	ESANN2015-106_2
	ESANN2015-87_3
	ESANN2015-132_2
	ESANN2015-109_2
	ESANN2015-99_2

	papers41-50
	ESANN2015-131_4
	ESANN2015-50_2
	ESANN2015-95_2
	ESANN2015-10_3
	ESANN2015-41_2
	ESANN2015-48_2
	ESANN2015-102_4
	ESANN2015-18_1
	ESANN2015-43_3
	ESANN2015-49_3

	papers51-60
	ESANN2015-86_3
	ESANN2015-22_2
	ESANN2015-113_3
	ESANN2015-24_5
	ESANN2015-32_2
	ESANN2015-80_2
	ESANN2015-84_2
	ESANN2015-120_2
	ESANN2015-40_2
	ESANN2015-61_5

	papers61-70
	ESANN2015-46_4
	ESANN2015-5_4
	ESANN2015-21_3
	ESANN2015-112_2
	ESANN2015-82_9
	ESANN2015-85_3
	1 Introduction
	2 Data analytics
	2.1 Measurement data analyses (Time series)
	2.2 Observation data analysis (OS labels)

	3 Selection of classifiers for the best performance
	4 Conclusions

	ESANN2015-79_3
	ESANN2015-66_10
	ESANN2015-76_4
	ESANN2015-115_2

	papers71-80
	ESANN2015-124_3
	ESANN2015-116_2
	ESANN2015-122_4
	ESANN2015-89_4
	ESANN2015-101_10
	ESANN2015-136_4
	ESANN2015-128_3
	ESANN2015-127_2
	ESANN2015-16_1
	ESANN2015-37_6

	papers81-90
	ESANN2015-97_2
	ESANN2015-134_5
	ESANN2015-74_2
	ESANN2015-75_3
	ESANN2015-137_4
	ESANN2015-28_4
	ESANN2015-64_2
	ESANN2015-108_1
	ESANN2015-58_3
	ESANN2015-7_4

	papers91-96
	ESANN2015-111_4
	ESANN2015-45_2
	ESANN2015-34_2
	ESANN2015-110_2
	ESANN2015-59_4
	ESANN2015-69_7

	proceedings2015front.pdf
	pages i-vi
	pages vii-viii
	page ix
	pages x-xii

