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Abstract. We consider the problem of learning a vector-valued function
f in an online learning setting. The function f is assumed to lie in a re-
producing Hilbert space of operator-valued kernels. We describe an online
algorithm for learning f while taking into account the output structure.
This algorithm, OLOK, extends the standard kernel-based online learn-
ing algorithm NORMA from scalar-valued to operator-valued setting. We
report a cumulative error bound that holds both for classification and
regression. Our experiments show that the proposed algorithm achieves
good performance results with low computational cost.

1 Introduction

We consider the problem of learning a function f : X → Y in a reproducing kernel
Hilbert space, where Y is a Hilbert space with dimension d > 1. This problem has
received relatively little attention in the machine learning community compared
to the analogous scalar-valued case where Y ⊆ R. In the last decade, more
attention has been paid on learning vector-valued functions [1]. This attention
is due largely to the developing of practical machine learning (ML) systems that
can be suitably formulated as an optimization of vector-valued functions.

Motivated by the success of kernel methods in learning scalar-valued func-
tions, in this paper we focus our attention to vector-valued function learning
using reproducing kernels [2]. It is important to point out that in this context
the kernel function outputs an operator rather than a scalar as usual. The oper-
ator allows to encode prior information about the outputs and their dependency.
In contrast to scalar-valued kernels, operator-valued kernels provide a powerful
way to extract relevant knowledge and encode the output structure when dealing
with “complex” output learning problems. They have been applied with success
in many learning contexts such as multi-task learning [3], functional response
regression [4] and structured output prediction [5, 6].

Despite these recent advances, one major limitation with using operator-
valued kernels is the high computational expense. Indeed, in contrast to the
scalar-valued case, the kernel matrix associated to a reproducing operator-valued
kernel is a block matrix of dimension td× td, where t is the number of examples
and d the dimension of the output space. Manipulating and inverting matrices
of this size becomes particularly problematic when dealing with large t and d.
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In this spirit we have asked whether, by learning the vector-valued function f
in an online setting, one could develop efficient operator-valued kernel based
algorithms with modest memory requirements and low computational cost.

In this context, it is worth mentioning that an online multi-task learning
approach using a Bayesian framework and Gaussian processes was proposed
in [7] and is related to our work. Compared to [7], our main contributions are:
A) we propose an algorithm called OLOK, which extends the widely known
NORMA algorithm [8] to operator-valued kernel setting (Section 2). OLOK
does not require to invert the block kernel matrix associated to the operator-
valued kernel and has at most a linear complexity with the number of examples
at each update. B) We show theoretical bounds for OLOK (Section 2), and C)
we provide an empirical evaluation of its performance which demonstrates its
scalability and effectiveness on multi-output data sets (Section 3).

2 OLOK

Notation. Let X be a Polish space, Y a separable Hilbert space, and H a
separable Reproducing Kernel Hilbert Space (RKHS) ⊂ YX with K : X ×X →
L(Y) its positive-definite reproducing operator-valued kernel. L(Y) is the space
of continuous endomorphisms of Y equipped with the operator norm. See [1]
for more details on operator-valued kernels and their associated RKHSs. Let
t ∈ N denotes the number of examples, (xi, yi) ∈ X × Y the i-th example,
` : Y × Y → R+ a loss function, ∇ the gradient operator, and Rinst(f, x, y) =
`(f(x), y) + (λ/2)‖f‖2H the instantaneous regularized error. λ ∈ R+ denotes the
regularization parameter and ηt ∈ R+ the learning rate at time t, with ηtλ < 1.

As with scalar-valued kernels [8], the key idea here is to perform a stochastic
gradient descent with respect to Rinst. The update rule (i.e., the definition of
ft+1 as a function of ft and the input (xt, yt)) is

ft+1 = ft − ηt+1∇fRinst(f, xt+1, yt+1)|f=ft ,

where ηt+1 denotes the learning rate at time t + 1. Using the reproducing
property of positive-definite operator-valued kernels [1], it is easy to see that
∇f (`(f(x), y)|f=ft = K(x, ·)∇z`(z, y)|z=ft(x), from which we deduce

ft+1 = (1− ηt+1λ) ft − ηtK(xt+1, ·)∇z`(z, y)|z=ft(xt+1). (1)

As a consequence, if we choose f0 = 0, then there exists (αi,j)i,j a family of

elements of Y such that ∀t ≥ 0, ft =
∑t
i=1K(xi, ·)αi,t. This leads to Algorithm 1,

which we call OLOK (Online Learning with Operator-valued Kernels).

Truncation. OLOK algorithm described above needs to keep in memory all
the previous input {xi}ti=1 to compute the prediction value yt, and this can be
costly. However, the influence of these inputs decreases geometrically at each
iteration, since 0 < 1 − ληt < 1. Hence, the error induced by neglecting old
terms can be controlled. So we can add a truncation step to store only a few
relevant past observations (see the optional truncation step in Algorithm 1).

562

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



Algorithm 1 OLOK

Input: λ, ηt ∈ R∗
+, (st)t ∈ N, loss function `,

Initialization: f0=0

At time t: Input : (xt,yt)

1. New coefficient: αt,t := −ηt∇z`(z, yt)|z=ft−1(xt)

2. Update old coefficients: ∀1 ≤ i ≤ t− 1, αi,t := (1− ηtλ)αi,t−1

3. (Optional) Truncation: ∀1 ≤ i ≤ t− st, αi,t := 0

4. Obtain ft: ft =
∑i=t

i=1K(xi, ·)αi,t

Complexity analysis. We consider a naive implementation of OLOK when
dimY(= d) <∞. At iteration t, the calculation of the prediction has complexity
O(td2) and the update of the old coefficients has complexity O(td). Hence the
complexity up to iteration t is O(t2d2). Note that the complexity of a naive
implementation of the batch algorithm for learning with operator-valued kernels
is O(t3d3). A major advantage of OLOK is its lower computational complexity
compared to classical batch operator-valued kernel-based algorithms.

Cumulative Error Bound. The cumulative error of the sequence (fi)i≤t
given by OLOK is defined by

∑t
i=1 `(fi(xi), yi). It is interesting to compare

this quantity to the error made with the function gt obtained from a regularized
empirical risk minimization algorithm which is the batch counterpart of OLOK.
The function gt is computed by solving the following minimization problem:
gt=argminh∈HRreg(h,t)=arg minh∈H

1
t

∑t
i=1`(h(xi),yi)+ λ

2‖h‖
2
H.

We analyze the cumulative error under the following common assumptions
on the boundedness of the kernel and the C-admissibility of the loss.

Assumption 1 supx∈X |K(x, x)|op ≤ κ2.

Assumption 2 ` is C-admissible, i.e., ` is convex and C-Lipschitz with regard
to its second variable.

Theorem 1 Let η > 0 such that ηλ < 1. If Assumption 1 and Assumption 2
hold, then there exists U > 0 such that, with ηt = ηt−1/2,

1

t

t∑
i=1

Rinst(fi, xi, yi) ≤ inf
g∈H

Rreg(g, t) +
α√
t

+
β

t
,

where α = 2λU2(2ηλ+ 1/(ηλ)) (resp. α = 2λU2(10ηλ+ 1/(ηλ)) with the trun-
cation step, and st = max

(
t1/2+ε, t0(λ, η, ε)

)
with t0(λ, η, ε) = min{t ∈ N, ηλ <√

t, exp(−ηλtε) ≤ ηλt−0.5, t0.5+ε ≤ 0.75t}), and β = U2/(2η).

The proof of Theorem 1 differs from that in the case of scalar-valued ker-
nels [8] through several points which are grouped in Proposition 2.1. Due to the
lack of space, we present here only the proof of Proposition 2.1 and refer the
reader to [8] for more details.
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Proposition 2.1 If Assumption 1 and Assumption 2 hold, we have

i. ∀t ∈ N∗, ‖αt,t‖Y ≤ ηtC,

ii. if ‖f0‖H ≤ U = Cκ/λ then ∀t ∈ N∗, ‖ft‖H ≤ U ,

iii. ∀t ∈ N∗, ‖gt‖H ≤ U .

Proof: (i) is a direct consequence of the Lipschitz property of ` and the def-
inition of α. (ii) is proved using Eq. (1) and (i) by induction on t. (ii) is
true for t = 0. If (ii) is true for t = m, then it is true for m + 1, since
‖fm+1‖H = ‖ (1− ηtλ) fm + k(x, ·)αm,m‖H ≤ Cκ

λ − κηtC + κηtC = Cκ
λ .

To prove (iii), one can see that by definition of gt, we have ∀ε > 0,

0 ≤ λ

2
(‖(1− ε)gt‖2H − ‖gt‖2H) +

1

t

t∑
i=1

`((1− ε)gt(xi), yi)− `(gt(xi), yi)

≤ λ

2
(ε2 − 2ε)‖gt‖2H + Cεκ‖gt‖H.

Since this quantity must be positive for any ε > 0, the dominant term in the limit
when ε→ 0 (i.e., the coefficient of ε) must be positive. Hence λ‖gt‖H ≤ Cκ. �

Case of the least squares loss. The least squares loss function does not satisfy
Assumption 2. We provide here Assumption 3 which is a sufficient condition to
recover the cumulative error bound in this case.

Assumption 3 `(z, y) = 1
2‖y−z‖

2
Y , ∃Cy > 0 such that ∀t ≥ 0, ‖yt‖Y ≤ Cy (the

output is bounded), and λ > 2κ2.

Proposition 2.2 If Assumption 1 and Assumption 3 hold, and ‖f0‖H < Cy/κ ≤
U = max(Cy/κ, 2Cy/λ), then ∀t ∈ N∗:

i. ‖ft‖H < Cy/κ ≤ U ,

ii. ∃V in a ‘neighbourhood’ of ft such that `(·, yt)|V is 2Cy Lipschitz,

iii. ‖αt,t‖Y ≤ 2ηtCy,

iv. ‖gt‖H ≤
2Cy
λ
≤ U .

Proof: We first prove that ∀t ∈ N∗, (i) =⇒ (ii) =⇒ (iii).
(i) =⇒ (ii): in the least squares case, the application z 7→ ∇z`(z, yt) =
(z − yt) is continuous. Assumptions 3 and 1 combined with (i) imply that
‖∇z`(z, yt)|z=ft(xt)‖Y < 2Cy. Using the continuity property, we obtain (ii).
(ii) =⇒ (iii): using the same idea as in Proposition 2.1, we obtain ‖αt,t‖Y =
‖ηt∇z`(z, yt)|z=ft−1(xt)‖Y ≤ ηt2Cy. Now we prove (i) by induction. The ini-
tialization (t = 0) is a consequence of the hypothesis, ‖f0‖H < Cy/κ. For the
propagation (t = m): If ‖fm‖H < Cy/κ, then using (ii) and (iii), we obtain
‖fm+1‖H ≤ (1− ηtλ)Cy/κ + 2κηtCy = Cy/κ + ηtCy(2κ − λ/κ) < Cy/κ, where
the last transition is a consequence of Assumption 3. Finally, note that by defini-
tion of gt, since 0 ∈ H, λ2‖gt‖

2
H+1

t

∑t
i=1`(gt(xi), yi)≤

λ
2‖0‖

2
H+1

t

∑t
i=1`(0, yi)≤C2

y .
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Fig. 1: Variation of the MSE of OLOK with the number of examples. (left)
Synthetic data set. (right) Parkinson Telemonitoring Data set.

3 Experiments

In this section, we conduct experiments on synthetic and real-world datasets
to evaluate the efficiency of OLOK. We compare the original and the truncated
version of OLOK with its batch counterpart. We consider here the vector-valued
Regularized Least Squares algorithm (vv-RLS). To measure the performance of
the learning algorithms, we use the Mean Square Error (MSE).

We use the Gaussian kernel with parameter µ for OLOK and vv-RLS defined
by Kµ(x, x′) = exp(−‖x−x′‖22/µ)J, where µ is the parameter of the kernel vary-
ing from 10−3 to 102 and J denotes the d× d matrix with coefficient Ji,j equals
to 1 if i = j and 1/10 otherwise. Compared to the scalar-valued case, the kernel
here outputs a matrix which allows to take into account output dependencies.
The regularization parameter λ for vv-RLS is chosen using five-fold cross vali-
dation. For OLOK, we use η = 0.1, ηt = 1/

√
t, and λ = 3.

We run OLOK and vv-RLS algorithms on the following real-world data sets:
Wine Quality2 (4898 instances, 12 attributes, d= 2), Parkinson Telemonitoring
(5875 instances, 20 attributes, d=2), and Advertisement click rate3 (1 millions
instance, 120 attributes, d=16). Additionally, we also used a synthetic dataset
(10000 instances, 50 attributes, d=20) generated as described in [9].

Convergence. We depict in Figure 1 the evolution of the MSE of OLOK as
the number of training data available increases, as well as the MSE of vv-RLS.
We can see that the MSE of OLOK quickly reaches the value of its batch coun-
terpart. The MSE of truncated OLOK is not far from that of vv-RLS and also
“decreases” when more samples are available. The convergence performance of
truncated OLOK is however less good than that of OLOK.

Accuracy and performance. We report the averaged MSE and the STD (stan-
dard deviation) of each algorithm and their respective running time in Table 1.
These results show that OLOK achieves a good trade-off between speed and
performance. It performs nearly as good as vv-RLS while being much faster.
Truncated OLOK allows to improve the speed of OLOK to the detriment of the
accuracy, but the MSE difference between the two algorithms is relatively small.

2http://archive.ics.uci.edu/ml/datasets.
3https://www.kaggle.com.
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Table 1: MSE (± STD) and running time (RT) for vv-RLS, OLOK and Trun-
cated OLOK (T-OLOK).

Synthetic Wine Parkinson Click
MSE RT MSE RT MSE RT MSE RT

vv-RLS 1e-5±1e-6 550s 2e-4±2e-5 240s 9.1e-2±1e-4 120s - -
OLOK 1e-5±1e-6 17s 2.3e-4±2e-5 12s 9.5e-2±1e-3 20s 1e-4 5h
T-OLOK 5e-5±4e-6 4s 2.3e-4±2e-5 2s 1.0e-1±1e-3 6s 3e-4 30m

4 Conclusion

The main barrier to wider use of operator-valued kernels is their computational
demands. In this paper we have addressed this issue using an online learning
framework. We have presented a new algorithm OLOK that compares favorably
to its batch counterpart in terms of running time while having a similar accuracy
performance. As future work, we plan to extend the framework of multiple
operator-valued kernel learning [10] to the online setting.
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