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Abstract. Decision tree induction algorithms, possibly combined with a
consensus technique, have been recently successfully extended to multipar-
tite ranking. It is the goal of this paper to address certain aspects of their
weakness, instability and lack of smoothness namely, by proposing ded-
icated ensemble learning strategies. A shown by numerical experiments,
bootstrap aggregation combined with a certain amount of feature ran-
domization dramatically improve performance of such ranking methods,
in terms of accuracy and robustness both at the same time.

1 Introduction

Although it can be easily formulated and covers a wide variety of applications
(e.g. medicine, finance, search engines, e-commerce), the multipartite ranking
problem is very difficult to solve. The goal is to rank objects, described by a
number d ≥ 1 of attributes/features X = (X(1), . . . , X(d)) ∈ Rd and which
(temporarily hidden) ordinal labels Y ∈ {1, . . . , K} are assigned to, in the
same order as that induced by the labels, on the basis of a training set of la-
beled examples. In practice, rankings are defined by means of a scoring function
s : Rd → R, transporting the natural order on the real line onto the feature
space and the gold standard for evaluating the ranking performance of s(x) is
the ROC manifold, or its usual summary the VUS criterion (VUS standing for
Volume Under the ROC Surface). Even if the Empirical Risk Minimization prin-
ciple, the founding paradigm of statistical learning theory, has been extended
to the situation where performance is evaluated by the VUS criterion (see [1]),
very few algorithms for general ROC surface optimization have been documented
in the statistical and machine-learning literature. Indeed, whereas a variety of
approaches have been proposed in the bipartite situation (i.e. when K = 2),
often reducing ranking to pairwise classification (see [2] for instance), K-partite
ranking for K ≥ 3 is generally adressed by decomposing the original ranking
task into K(K − 1)/2 bipartite ranking subproblems, as in [3] or [4]. How-
ever, a multipartite ranking algorithm for ROC manifold recursive optimization,
called TreeRank Tournament, has been recently introduced in [5], produc-
ing a scoring rule described by an oriented binary (ranking) tree, extending the
TreeRank procedure originally introduced in the bipartite setup [6]. Though
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proved to be consistent, this method suffers from major drawbacks, just like
decision trees for local learning problems (e.g. classification or regression), ac-
centuated by the global nature of the multipartite ranking problem: instability
and lack of smoothness. It is the main purpose of this article to investigate to
which extent the bootstrap aggregating technique (see [7]) combined with fea-
ture randomization can improve the performance of TreeRank Tournament,
like in [8] for classification/regression trees or in [9] for bipartite ranking trees
produced by the TreeRank algorithm.

The article is structured as follows. Basic concepts of multipartite ranking
theory are briefly recalled in section 2, together with a short overview of (the few)
statistical learning methods proposed to solve the multipartite ranking problem
introduced in the literature. Section 3 describes the main ingredients of the
approach we promote to increase the accuracy/stability of TreeRank Tour-
nament, while displaying illustrative numerical results, which provides strong
empirical evidence of the improvement on the original algorithm.

2 Background - Multipartite Ranking

We start off with recalling key notions related to multipartite ranking. Just like
in the ordinal regression setup, in the K-partite ranking problem, one has a
system consisting of an ordinal random output variable Y taking its values in an
ordered set of cardinality K, Y = {1, . . . , K} say, and an input random vector
X, valued in a high-dimensional feature space X ⊂ Rd with d ≥ 1. Informally,
based on a training sample of independent copies of the generic pair (X,Y ), the
goal is to learn a (measurable) scoring function s : X → R in order to rank
any new observations X1 . . . , XN with temporarily hidden labels Y1, . . . , YN ,
so that s(Xi) and Yi tend to increase or decrease together. Though akin to
multiclass classification, multipartite ranking problem cannot be formulated in
an ”universal” manner, see [4] for details. When it is not empty, we denote S∗
the ensemble of optimal elements for the K-partite ranking problem.
ROC analysis. Let S be the set of all measurable scoring functions. For any
s ∈ S, we denote by Fs,k(t) = P{s(X) ≤ t | Y = k} the cdf of the r.v. s(X) given
Y = k, for 1 ≤ k ≤ K. For simplicity, we only consider the case K = 3 here
(the present analysis can be straightforwardly extended to the general K-partite
context). We denote W−1(u) = inf{t ∈]−∞, +∞] : W (t) ≥ u}, u ∈ [0, 1], the
generalized inverse of any cdf W (t) on R. Equipped with these notations, the
ROC surface can be then viewed as the graph of a function (α, γ) ∈ (0, 1)2 7→
ROCs(α, γ), where ROCs(α, γ) =

(
Fs,2 ◦ F−1s,3 (1− γ)− Fs,2 ◦ F−1s,1 (α)

)
+

, at

points (α, γ) such that Fs,1 ◦ F−1s,1 (α) = α and Fs,3 ◦ F−1s,3 (1 − γ) = 1 − γ,
with u+ = max(u, 0) for any u ∈ R. When we fix γ = 1 (resp. α = 0),
we recover the ROC curve associated to the problem 1 vs 2 (resp. 2 vs 3)
α ∈ [0, 1] 7→ ROC1, 2(s, α), defined by ROC1, 2(s, α) = 1−Fs,2 ◦F−1s,1 (1−α) (up

to a coordinate transform (α, β) ∈ [0, 1]2 7→ (1−α, β). As proved in [4], the ROC
surface of S∗’s elements, ROC∗ say, is concave and dominates everywhere that of
any other scoring function s. This functional criterion can also be summarized
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by the Volume Under the ROC Surface VUS(s)
def
=
∫ ∫

ROCs(α, γ)dαdγ. The
formula below (see [10]) permits to interpret it as the ”rate of concording 3-
tuples”:

VUS(s) = P{s(X1) < s(X2) < s(X3)}+
1

2
P{s(X1) = s(X2) < s(X3)}

+
1

2
P{s(X1) < s(X2) = s(X3)}+

1

6
P{s(X1) = s(X2) = s(X3)},(1)

where Xk’s denote independent r.v.’s with the distribution X given Y = k. Sta-
tistical versions of the ROC surface and of the VUS criterion are obtained by
replacing the class distributions by their empirical counterparts. We may now
quantitatively rephrase the ranking task. The goal is to build, from training
data, a scoring function s whose ROC surface is ”as close as possible” to ROC∗.
Although many measures of ”closeness” can be considered, the L1 case is of spe-
cial interest d1(s, s∗) =

∫ ∫
|ROC∗(α, γ)−ROCs(α, γ)|dαdγ = VUS∗ −VUS(s),

mainly because minimization of d1(s, s∗) is clearly equivalent to maximization
of VUS(s).
Using TreeRank for multipartite ranking. TreeRank is a recursive al-
gorithm for the problem of bipartite ranking. It produces an oriented partition
of the feature space X , defining thus a ranking for which elements of a same cell
being viewed as ties. The process is described by a left-to-right oriented binary
tree structure, termed ranking tree. The root node represents the whole feature
space C0,0 = X and each internal node (j, k) with j < J and k ∈ {0, . . . , 2j−1}
corresponds to a subset Cj,k ⊂ X , whose left and right siblings respectively de-
pict disjoint subsets Cj+1,2k and Cj+1,2k+1 such that Cj,k = Cj+1,2k ∪ Cj+1,2k+1.
We call the splitting rule LeafRank and its goal is to maximize the area under
the ROC curve. Therefore, it happens that this problem boils down to solve a
cost-sensitive binary classification problem so TreeRank can be viewed as a
weighted version of CART, see subsection 3.3 in [11] for further details.

To the best of our knowledge, two approaches for building consistent multi-
partite ranking rules in the VUS sense have been documented in the literature.
The first one consists in reducing the K-partite problem to K−1 (or K(K−1)/2)
bipartite subproblems, see [3] for instance. In [4], such a method is shown VUS
consistent as soon as the bipartite procedure used to solve each subproblem is
AUC consistent, just like the TreeRank algorithm studied at length in [11].
Alternatively, the technique proposed in [5], called TreeRank Tournament,
corresponds to a recursive procedure for VUS maximization, producing a tree-
structured scoring function. In each cell, the LeafRank algorithm is run for
the problems 1vs2 and 2vs3 and we choose the splitting rule that maximize the
VUS (Tournament step). It is the purpose of the next section to show how a
bagging procedure combined with randomization can improve the performance
of this multipartite ranking method.
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3 Bootstrap Aggregation and Randomization

We now describe the general approach we propose to improve performance and
stability of a learning algorithm in the multipartite ranking context. Two compo-
nents involved in the ensemble multipartite ranking procedure we promote here:
bagging and randomization. By definition, a learning algorithm S is a mapping
from the set of all possible training sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of
independent copies of the random pair (X,Y ), i.e. the product space (X ×
{1, . . . , K})n to the set of scoring functions. Its performance related to a given
sample Dn is evaluated through the quantity VUS(S(Dn, .)). The instability
of the algorithm S(., .) can be measured by the quantity Instabn(S) equals
to E[dτ (R((S(Dn, X ′′1 ), . . . , S(Dn, X ′′N )),R((S(D′n, X ′′1 ), . . . , S(D′n, X ′′N )))],
where Dn and D′n are two independent training samples, independent from the
unlabelled i.i.d. sample {X ′′1 , . . . , X ′′N} of the marginal distribution F (dx),
while R(s(X ′′1 ), . . . , s(X ′′N )) denotes the rank vector related to the vector
(s(X ′′1 ), . . . , s(X ′′N )) and dτ the Kendall tau distance. Concerning feature
randomization, we recall that it can be applied at two levels in the algorithms
considered. At the level of the global ranking tree, TreeRank in the consensus
approach and TreeRank Tournament can be implemented using a subset
of FT ≤ d features chosen at random, while each LeafRank recursion can be
implemented by means of a subset of FL features chosen among the FT features
chosen for fitting the ranking tree.

Algorithm

Input. Number B ≥ 1 of bootstrap samples, feature randomization parameter
θ = (FT , FL). Training sample Dn. Randomized learning algorithm S((D, θ), .).
Unlabeled vector (X1, . . . , XN ) to be ordered.

1. From the original data Dn, generate B ≥ 1 bootstrap samples

D∗(1)n , . . . , D∗(B)
n by drawing with replacement

2. Build B ≥ 1 scoring functions using S((D∗(b)n , θ), .), b = 1, . . . , B.

Output. Aggregated ranking rule

(
S̄B(X1), . . . , S̄B(Xn)

)
=

1

B

B∑
b=1

R((S(D∗(b)n , X ′′1 ), . . . , S(D∗(b)n , X ′′N ))).

Numerical Experiments We investigate the impact of the aggregation with re-
sampling and feature randomization on the performance of TreeRank Tour-
nament. We illustrate the methodology promoted in this paper by implement-
ing it on a real data set, the Cardiotocography Data Set considered in [12] namely.
The data have been collected as follow: 2126 fetal cardiotocograms (CTG’s in
abbreviated form) have been automatically processed and 20 diagnostic features
measured. The CTG’s have been next analyzed by three expert obstetricians
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and a consensus ordinal label has been then assigned to each of them, depending
on the degree of anomaly observed: 1 for ”normal”, 2 for ”suspect” and 3 for
”pathologic”. The performance is measure through several criteria : the mean of
the empirical V US, the standard deviation of the empirical V US, the instability
(Instabτ ) and the ∆Env that is the difference between the max and the min of
the VUS. We evaluate the performance of the methods through 5 replications of
a 5 fold cross-validation procedure. The evaluated procedures are the following:

• TreeRank Tournament (“TRT” in the table) the version without ag-
gregation nor randomization, with one master tree of max depth 20 and
LeafRank max depth is 5.

• Bagging TreeRank Tournament (“TRT bagg” in the table) the aggre-
gated version of the previous one with B = 20, 50, 100 bootstrap samples.

• TreeRank Tournament Forest (“TRT Forest” in the table), the forest
version with B = 20, 50 bootstrap samples and FT = FL = 10 and FT =
FL = 5.

B = “−′′ means that we skip the bootstrap samples so we learn 1 tree. We also
compare these strategies with the aggregation of TreeRank (“AggTR” in the
table) learn for each pair of labels 1 ≤ i < j ≤ K(see [4] for a detailed analysis
of this procedure), with bootstrap samples of size B = 1(single Tree), 20, 50.

Results and comments Results are presented in Table 1. The main conclusion
is that Bagging with B = 20 always improves hugely the plain TreeRank Tour-
nament. TreeRank tournament outperforms the aggregation of all the TreeRank
scoring function learned on each pair of labels. Moreover one can see that the
features randomization at the tree level coupled with the bagging improves the
performance. One can see that the randomization at the node level degrades a
lot the accuracy or needs more bagging to catch up.
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