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Abstract. Feature filtering algorithms are commonly used in feature
selection for high-dimensional datasets due to their simplicity and efficacy.
Each of these algorithms has its own strengths and weaknesses. Ensemble
of different ranking methods is a way to provide a stable and efficacious
ranking algorithm. We propose a PCA-based algorithm for filter ranking
algorithms ensemble. We compared this algorithm with four other rank
aggregation algorithms on five different datasets used in the NIPS-2003
feature selection challenge. We evaluated the stability of the resulting
rankings and the AUC score for four classifiers learnt on resulting feature
sets. The proposed method has shown better stability and above-average
efficacy.

1 Introduction

Feature selection is one of two general approaches to reduce the number of fea-
tures in a model by selecting a subset of relevant features. Feature selection
algorithms include [2] embedded methods, wrappers and filters. Filters are sub-
divided [3] into space search methods and ranking methods. There are many
fields and applications, such as targeted advertising, social network analysis,
and bioinformatics, where it is necessary to classify large amounts of data [1].
Since the number of features in real-world problems can reach hundreds of thou-
sands, ranking filters are useful, because they are known to be the fastest feature
selection techniques.

Algorithms ensemble approach is widely used in machine learning beacause
usually there is no best algorithm. This approach was applied for feature selec-
tion algorithms [4, 5, 6]. The ranking filters ensemble constracting problem can
be reduced to the rank aggregation problem, which also arises in various fields,
such as social choice theory [7] or DNA microarray meta-analysis [8].

In this paper we propose a novel approach to construst ensemble of ranking
filters and a novel feature ranking algorithm implementing this approach. The
proposed algorithm is tested on five datasets and compared with other methods
based on rank aggregation.

∗This work was financially supported by the Government of Russian Federation, Grant 074-
U01.
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2 Basic concepts and notation

In the binary classification problem the input data is composed of a dataset
X = {x1, . . . , xm} with m objects and a target vector Y = (y1, . . . , ym), where
each value is equal either to 1 or to 0. We will use the term attribute to refer
to features of a given dataset. Let A = {a1, . . . , an} denote the attribute set.
Each object of X is described by n attributes from A. Let xij = aj(xi) denote
the j-th attribute of the i-th object.

A ranking filter f is a feature selection algorithm that is defined by a scoring
function s : A → R and a cutting rule κ. This rule for a given ranking or
a score set returns an attribute subset. Usually κ chooses a fixed number of
high-ranked features (so called “top-k”) or is threshold-based. Ranking filter
algorithm consists of the following steps:

1. Evaluate the scoring function s(aj) for each attribute.
2. Rank the attributes according to their scores.
3. Select top attributes according to the cutting rule κ.
Let F = {f1, . . . , fk} denote the set of ranking filters, each with a scoring

function si and a cutting rule κi. A method for ensemble construction obtains
an attribute subset A′ by combining filters from F . A common way to achieve
this is to aggregate rankings {ri}ki=1 into one and apply a cutting criteria to it.

3 First Principal Component Projection Score Algorithm

The problem of filters ensemble construction from the set F can be reduced to
the problem of finding s∗ — a combination of scoring functions. Since rank
aggregation methods do not employ scores, this approach is more general.

Each attribute aj can be considered as an object, described with k fea-

tures (s1(aj), . . . , sk(aj)). Finding a proper mapping from (si(aj))
j=n,i=k
j=1,i=1 to

(s∗(aj))
n
j=1 might be considered as a dimension reduction problem. Applying

feature selection techniques in this problem is equivalent to choosing the best
given filter. For obtaining an ensemble, feature extraction approaches should be
applied. One of the most popular dimension reduction techniques is the Princi-
pal Component Analysis (PCA) [9, 10]. Since the desired number of dimensions
is one, only the first principal component (FPC) is required, therefore the prob-
lem is equivalent to the original Pearson’s finding “best-fitting straight line” —
a line, on which the sum of all points squared projections is minimal.

The main idea of the algorithm we call First Principal Component Projection
Score (FPCPS) is to use FPC coordinates as new scores to obtain a resulting
ranking. Redundancy of data is a theoretical requirement for reasonable PCA
application. An empirical study has uncovered that application of most pairs of
scoring functions results in approximately the same redundancy in each dataset.

It must be noted that the proposed algorithm should be applied after using
the cutting rule for all the ranking filters. Therefore, PCA is applied for a dataset
with n′ objects described with k features, where n′ is the number of attributes
after cutting and k is the number of ranking filters in the ensemble.
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4 Experiments

4.1 Experiment design

For experiments we use five datasets (subsection 4.2). Each dataset is randomly
split 10 times into a training set (60%) and test set (40%). Thus, we conduct
10 experiments. In each experiment, each of the four basic scoring functions
(subsection 4.3) is evaluated for each attribute in the training set. Thus, we
obtain four basic rankings. For each experiment, choice of the number of selected
attributes is based on attribute score variance, we retain from 10% to 25% of
original attributes.

Then we use four methods (subsection 4.4) and the FPCPS algorithm to
obtain derivative rankings. For FPCPS, we normalize scores within each exper-
iment for each dataset, since it is a common recommendation for PCA applica-
tion.

We compare methods using two criteria: the stability of obtained ranking
and the efficacy of classification algorithms on the resulting feature subset.

For stability measuring we use an adaptation [11] of the Tanimoto distance.
For each dataset and each algorithm we evaluate the stability of resulting rank-
ings by comparing the subsets selected in each cycle of cross-validation. The
final stability of an algorithm on a given dataset is calculated as an average of
45 paired comparisons on this dataset (for each pair of 10 experiments).

To measure each ranking efficacy we use the four classifiers (subsection 4.5).
For each classifier we evaluate the area under the ROC curve (AUC) for every
obtained attribute subset. The greater the AUC metric is, the better ranking
filter is.

4.2 Datasets

The five datasets are taken from the NIPS 2003 feature selection challenge1.
They are preprocessed versions of datasets from the UCI Machine Learning
Repository2. All datasets have a binary target vector. The dataset names
are: Arcene (number of objects m = 200; number of attributes n = 10K),
Gisette (m = 7K; n = 5K), Dexter (m = 600; n = 20K), Dorothea (m = 1150;
n = 100K), and Madelon (m = 2600; n = 500).

4.3 Basic scoring functions

We take four different scoring functions, each is based on comparison of the at-
tribute vector with the target vector Y. Two of them are well-known [4]: it is the
Spearman correlation coefficient (SP), which is defined as the Pearson correla-
tion coefficient between ranked variables, and the Symmetrical uncertainty (SU),
which is normalized information gain measure. We describe the two other scoring
functions in a more detailed way.

1http://www.nipsfsc.ecs.soton.ac.uk
2http://archive.ics.uci.edu/ml/
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The Value Difference Metric (VDM) [12] is defined as follows:

VDM(Aj , Y ) =
1

2

∑

i

|p(Aj = xij |yi = 1)− p(Aj = xij |yi = 0)| .

Next, the Fit criterion (FC) [12] is a measure similar to the z-score used
in statistics. A binary variable which determines whether a point x belongs to
distribution B0 or distribution B1 is defined as

FCP(x,B0, B1) = argminl=0,1

|x− B̄l|
var(Bl)

.

The Fit criterion value is the mean of all such values, where B0 and B1 are
random variables with conditional probability distribution p(aj(xi) = xij |yi = 0)
and p(aj(xi) = xij |yi = 1) respectively:

FC(Aj , Y ) =
1

m

m∑

i=1

[FCP(xij , B0, B1) = yi] ,

where [a = b] equals 1 if a = b and 0 otherwise.

4.4 Rank aggregation algorithms

Several well-known rank aggregation methods are used in experiments: the
Borda method and two variants of the Markov Chain method [13]. We also
use a simple approach we call Best-Go-First (BGF) algorithm.

Suppose we have attributes {a1, . . . , an} and rankings R = {r1, . . . , rk} from
k different feature ranking methods. Let L = {lij} be a matrix, where lij =
|{r|r ∈ R, r(i) > r(j)}|. For the Borda method we obtain a ranking with a
new scoring function sB(i) =

∑m
j=1 lij . For the Markov chain methods (MC)

sMC(i) = 1 −∑i�=j P (i → j). In MC1 P (i → j) = 1/m if rt(i) > rt(j) in at
least one ranking, and 0 otherwise. In MC2 P (i → j) = 1/m if rt(i) > rt(j) for
majority of rankings, and 0 otherwise. In the BGF method a new ranking r∗ is
obtained by taking iteratively at each step t all attributes {a[h,t]}h=k

h=1 such that
rh(a[h,t]) = t ∀h = 1, . . . , k and a[h,t] /∈ r∗.

4.5 Classifiers

We take four commonly used classifiers: Naive Bayes, k-Nearest Neighbors (IBk),
Random Forest and Support Vector Machine (SMO). The implementation of
these algorithms was taken fromWeka. All the algorithms are learnt with default
parameters except IBk. We set CrossValidate parameter for IBk to select optimal
value of k with cross validation.

5 Results

As shown in Table 1, for almost all datasets the value of FPCPS algorithm
stability surpasses all the values of aggregation algorithms except MC2.
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Dorothea Gisette Dexter Arcene Madelon
Borda 0.410 0.815 0.335 0.600 0.256
MC1 0.380 0.813 0.445 0.513 0.241
MC2 0.435 0.842 0.469 0.613 0.263
BGF 0.447 0.467 0.471 0.556 0.260

FPCPS 0.471 0.755 0.436 0.564 0.288

Table 1: Stability of aggregation algorithms.

The means of AUCmetric value for the Madelon dataset are shown in Table 2.
Used classifiers are presented in the first column. The first row contains used
feature ranking methods. Other cells of the table contain average AUC measure
values for corresponding feature ranking methods and classifiers. AUC tables
for other datasets can be found in the repository3.

SP SU VDM FC Borda MC1 MC2 BGF FPCPS
KNN 0.599 0.612 0.547 0.569 0.594 0.589 0.613 0.629 0.627
NB 0.639 0.643 0.613 0.636 0.639 0.640 0.638 0.641 0.640
RF 0.751 0.769 0.639 0.698 0.745 0.721 0.765 0.779 0.774
SVM 0.580 0.612 0.609 0.589 0.586 0.593 0.581 0.596 0.596

Table 2: AUC scores on Madelon dataset.

We use paired Wilcoxon signed-rank test to check whether two feature selec-
tion methods are statistically different on the given dataset and using a given
classifier. Two methods are considered statistically distinguishable if the p-value
is less than 0.05. For example, FPCPS and BGF are not statistically different
for the SVM classifier trained on the Madelon dataset. The tables of p-values
for classifiers and datasets can be found in the repository4.

We estimate nine feature selection methods with different ranking algorithms
on five datasets. Experiments show that the proposed method is among the top
three ones with highest AUC scores or it is statistically indistinguishable from
such methods on all datasets except the Gisette dataset. On the Gisette dataset,
FPCPS has the fourth result in average.

6 Conclusion and Future Work

We have proposed the FPCPS algorithm for ensemble construction. It builds a
scoring function as an ensemble of scoring functions using PCA. Applied to four
datasets, the proposed algorithm showed encouraging stability and appeared to
be among top-3 most efficacious algorithms for all the classifiers.

If any two coefficients in the FPC equation have different signs, projections
of all high-scored attributes will be situated between lower-scored ones, there-
fore final ranks of high-scored attributes will not be the highest. This problem
may occur when many lower-scored but highly dispersed attributes have more
impact on the first principal component equation than others. Experiments

3http://genome.ifmo.ru/files/papers files/ESANN2015/AUCs.pdf
4http://genome.ifmo.ru/files/papers files/ESANN2015/p-values.pdf
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show that this situation never arises after applying the cutting rule. We hold
special experiments with the cutting rule applied after merging all scoring func-
tions, therefore all the attributes are used to find FPC. In the Dorothea dataset,
which has the largest number of attributes, the FPCPS algorithm shows ex-
tremely poor results, while in other datasets the results are slightly worse than
in the experiments with preliminary application of the cutting rule.

The proposed approach has shown a potential of further improvement. We
suggest that there are three possible directions of future work. First, to solve
the reformulated problem with attributes weighted according to their score.
Weighted PCA [14] can also be use to solve this problem. The problem of
finding the attribute weight function is similar to the problem of finding a re-
sulting scoring function with a difference that these functions are applied for
different purposes. Second, to learn coefficients in the linear equation of re-
sulting scoring function. Finally, to apply non-linear approaches for combining
scoring functions.
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