
Learning Recurrent Dynamics using
Differential Evolution

Sebastian Otte1∗, Fabian Becker1, Martin V. Butz2, Marcus Liwicki3

and Andreas Zell1

1- University of Tuebingen - Cognitive Systems Group
Tuebingen - Germany

2- University of Tuebingen - Cognitive Modelling Group
Tuebingen - Germany

3- University of Kaiserslautern - Multimedia Analysis and Data Mining
Kaiserslautern - Germany

Abstract. This paper presents an efficient and powerful approach for
learning dynamics with Recurrent Neural Networks (RNNs). No special-
ized or fine-tuned RNNs are used but rather standard RNNs with one fully
connected hidden layer. The training procedure is based on a variant of
Differential Evolution (DE) with a modified mutation schemey that allows
to reduce the population size in our setup down to five, but still yields very
good results even within a few generations. For several common Multiple
Superimposed Oscillator (MSO) instances new state-of-the-art results are
presented, which are across the board multiple magnitudes better than
the achieved results published so far. Furthermore, for new and even more
difficult instances, i.e., MSO9–MSO12, our setup achieves lower error rates
than reported previously for the best system on MSO5–MSO8.

1 Introduction

Sequence generation is a key aspect of neural dynamic systems, e.g., generating
trajectories for mobile robots, robot arm control, and so on. Most recently, a in-
teresting Recurrent Neural Network (RNN) based system for hand-writing gener-
ation was developed by Alex Graves [1]. This and other applications demonstrate
great potential of RNNs in terms of performance, generalization and robustness
for sequence generation.

In this paper we contribute a simple method for learning dynamics with
RNNs that in spite of its simplicity outperforms other more sophisticated ap-
proaches. The presented system is benchmarked on several instances of the com-
monly known Multiple Superimposed Oscillator (MSO). Learning to generate a
single sine wave is a relatively easy task. However, learning a superimposition
of more than one wave is clearly more difficult. In the past, learning even a
two-wave superimposition with RNNs was considered as almost impossible [2].
Even if this was later disproved, the problem remained to be difficult due to the
necessity to form multiple independent oscillators in one closed system [3]. Most
recently, balanced Echo State Networks (ESNs) [4] were shown to be capable
of learning MSO instances up to MSO8 very precisely. Important findings of

∗Corresponding author, sebastian.otte@uni-tuebingen.de

65

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

the latter are that the output feedback must be very small. On the other hand,
neither the degree of connectivity nor the spectral radius in the reservoir were
particularly crucial.

2 Recurrent Neural Networks

For this research we used standard recurrent neural networks. Furthermore, we
avoided any topological pre-selection or optimization, e.g., like in Evolino [3], as
well as other tuning mechanisms, except, that we scale the driving signal by a
given factor. Our RNN architecture has one input cell, one linear output cell
and one fully-connected hidden layer consisting of hyperbolic tangent cells. The
internal dynamics are only driven by a scaled signal passed through the input
cell. This driving signal is either a teaching signal (during washout and training
phase) or output feedback (during test phase). How this works in particular is
discussed in Section 4.

While the input and hidden weights are given as a candidate solution vector
by the optimizer, the output weights are computed for each such vector via linear
least squares like in, e.g., ESNs [2] or Evolino [3] thus matching the internal
dynamics optimally by solving

Xw = z ⇔ X+Xw = X+z ⇔ w = X+z, (1)

where z ∈ R
T is the target sequence, X ∈ R

T×n is a matrix containing all
hidden activations xt

h and w is a the output weight vector mapping the hidden
dynamics to the linear output neuron. In this paper Eq. (1) is solved using a
singular value decomposition of X.

3 Differential Evolution

Differential Evolution (DE) is a population-based evolutionary algorithm for
global optimization [5] in continuous space. DE has shown to yield good results
on a variety of benchmark functions as well as real world problems [6].

In its simplest form a new candidate solution, a so called donor vector vi,G is
created for each target solution ui, by randomly selecting three unique vectors
ur1,G, ur2,G and ur3,G from the current population of size NP in generation G.

vi,G = ur1,G + F · (ur2,G − ur3,G) (2)

The differential weight F scales the difference vector, which is added to the
first randomly selected vector. Elements of the donor vector enter the trial vector
with probability CR. The trial vector is compared to the original target solution
regarding their fitness and whichever yields a better result is admitted to the
next generation.

However, several different and more sophisticated mutation schemes have
been proposed in the past, see [6] for more details. For many problems the

66

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

DE/target-to-best/1 scheme performed best as it is a good trade-off between
convergence behavior and number of fitness evaluations.

vi,G = ui,G + F · (ubest,G − ui,G) + F · (ur1,G − ur2,G) (3)

Hereby, ubest,G refers to the best solution of the current generation. During
our experiments we compared DE/target-to-best/1 and other popular mu-
tation schemes and studied the influence of the control parameters. Most of
them showed sufficiently good results related to our problem, but performed not
very efficiently, since they need a high number of problem evaluations (many
generations and high population sizes). During this research we came up with
the following mutation scheme that can be seen as an adapted version of the
DE/target-to-best/1 mutation.

vi,G = ui,G + F · (ubest,G − ur1,G) + F · (ur2,G − ur3,G) (4)

In contrast to DE/target-to-best/1 a random solution is subtracted from
ubest,G, while ui,G still remains as base vector. Note that in random-to-best

strategies usually also a random base is used. Surprisingly, this mutation scheme,
which is to our knowledge until now not propagated in the common literature as
a successful mutation scheme, results in a significantly better and deeper con-
vergence, especially when using very small populations (NP < 10). Due to this,
DE becomes a powerful tool for optimizing the hidden weights of the RNNs in
our problem context.

4 Experiments

The MSO instances used for the experiments are generated using the equation

fn(t) =

n∑

i=1

sin(ϕit), (5)

where n gives the number of superimposed waves and ϕi each particular fre-
quency. In this paper, MSO instances up to twelve waves are investigated using
the following frequencies ϕ1 = 0.2, ϕ2 = 0.311, ϕ3 = 0.42, ϕ4 = 0.51, ϕ5 = 0.63,
ϕ6 = 0.74, ϕ7 = 0.85, ϕ8 = 0.97, ϕ9 = 1.08, ϕ10 = 1.19, ϕ11 = 1.27, ϕ12 = 1.32.
The first eight frequencies are taken from [4], whereas the remaining four are
added by us. For instance, MSO5 contains the frequencies from ϕ1 to ϕ5, MSO6
contains the frequencies from ϕ1 to ϕ6 and so on.

The usual MSO benchmark consists of the first 700 time steps of the related
dynamics. The very first 100 time steps are used as a washout phase. Here, the
target signal of the previous time step is fed into the network but the network
output is completely ignored. The next 300 time steps are the training phase,
in which the target signal is also injected and the output prediction error is
measured. The last 300 time steps are used as test phase, where the network
is fed with its own output from each previous time step. An entire fitness

67

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

evaluation works then as follows. The hidden weights provided by the optimizer
are copied into the RNN. Afterwards a washout phase and a training phase is
performed. Using the activation dynamics during the training phase the output
weights are computed by solving Eq. (1). Then with this output weights copied
into the RNN, again a washout phase and a training phase is performed. The
performance of the second training phase is then used the fitness signal for the
optimizer.

To measure the test phase performance as well as the fitness we compute the
Normalized Root Mean Square Error (NRMSE). Given a target sequence z and
the generated output sequence x the NRMSE is then calculated through

E(x, z) =

√√√√√

∑

1≤t≤T

(zt − xt)2

Tσ2
z

. (6)

In order to get more objective results we used the same training setup, ex-
cept the hidden layer size, for all MSO instances without any particular tuning.
The input for the RNNs is generally scaled with 10−12, matches findings of [4].
The DE population is initialized with values on the default interval [−0.1, 1.0].
Further, we used F = 0.2, CR = 0.4 and NP = 5, whereas the optimization
was aborted after 1.000 generations. All experiments are performed with the
JANNLab Toolkit [7].

5 Results and Discussion

Table 1 contains the error achieved with our system for various MSO instances
(average over 10 runs) as well as previously reported results in the literature.
For each instance we used an RNN with 5 ·n hidden neurons (n gives the number
of frequencies). The results show very clearly, that the RNNs in our setup out-
perform the previous methods significantly on all listed dynamics. For example,
on MSO8 we achieved an NRMSE of 6.14 ·10−8 compared to 2.73 ·10−4 achieved
with a balanced ESN. In fact the NRMSE we yielded on MSO12 is still magni-
tudes better than the best NRMSE for MSO5 reported so far. Note that good

Table 1: Prediction error NRMSE on test phase for various MSO instances

Dynamics This paper [4] [8] [9] [3]

MSO5 4.16 · 10−10 1.06 · 10−6 2.54 · 10−2 ≈ 8 · 10−5 1.66 · 10−1

MSO6 9.12 · 10−9 8.43 · 10−5 – – –
MSO7 2.39 · 10−8 1.01 · 10−4 – – –
MSO8 6.14 · 10−8 2.73 · 10−4 4.96 · 10−3 – –
MSO9 1.11 · 10−7 – – – –
MSO10 1.12 · 10−7 – – – –
MSO11 1.22 · 10−7 – – – –
MSO12 1.73 · 10−7 – – – –

68

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

 1000 1100 1200 1300 1400

t

Fig. 1: Visualization of the output signal (upper curve) and the hidden dynamics
in a exemplary RNN with 15 hidden neurons learned an MSO5 after oscillating
for already 1.000 time steps. The output signal has a variance of ≈ 2.5 the
internal dynamics have a variance of ≈ 3 · 10−25.

error rates (< 10−5) are reached even after only a few generations (G ≈ 20),
thus only 1–2 seconds are required to learn MSO12. When plotting the network
output against ground truth, there is still no visual difference noticeable even
after hundreds of thousands time steps (verified on MSO12), although the net-
work was stimulated with the target signal only during the washout phase for
this verification.

To get an idea of the interplay of the hidden neurons generating the output
signal, Fig. 1 gives an insight to an exemplary RNN with 15 hidden neurons
that learned MSO5. Cleary, individual groups of neurons do not reflect particular
frequencies and amplitudes, but the output signal is intertwined in the 15 hidden
neurons.

Furthermore, we made several other observations that are shortly outlined in
the following. Using the network output as feedback signal during the training
phase results in more stable networks concerning long-term generalization. Then
training and test error differ not so much (only 1–2 magnitudes) as with teacher
forced input (2–4 magnitudes). Note that our setup also works with linear hidden
units. Hereby, the relatively small scale of the output-feedback is not required
and can be omitted.

With a higher number of hidden neurons (> 10 ·n) very often networks occur
that perform well without any optimization only with the randomly initialized
weights, which can thus be seen as ESNs with 100% connectivity. Their per-
formance is not as high as with DE optimization (3–4 magnitudes lower), but

69

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

noticeable better than known for ESNs on the MSO benchmark so far. On
the other hand, using the same initialization as for DE the best randomly cho-
sen RNN out of 1,000 yielded a poorly NRMSE of ≈ 1.77 in the test phase for
MSO12. This confirms the optimization performance in our setup.

6 Conclusion

We presented a way that enables standard Recurrent Neural Networks (RNNs)
without any specialized structural optimization or topological dependent fine
tuning to learn dynamics very efficiently and precisely using a variant of Differ-
ential Evolution (DE) equipped with a modified mutation scheme. An interesting
aspect of the proposed method is that the DE optimizer requires only very few
individuals, namely five, throughout all of our experiments.

In our system, training the hidden weights is done via DE, whereas the output
weights are determined using a least squares solution. Hereby, we achieved
the best known results so far for various instances of the common Multiple
Superimposed Oscillator (MSO) benchmark with up to twelve waves (more waves
are possible as well). In fact our results are magnitudes better than previously
reported values.

References

[1] A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850 [cs],
August 2013.

[2] H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD Report, 148, Fraunhofer Institute for Analysis and Information
Systems AIS, Sankt Augustin, Germany, 2001.

[3] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent neural
networks by Evolino. Neural Computation, 19:757–779, 2007.

[4] D. Koryakin, J. Lohmann, and M. V. Butz. Balanced echo state networks. Neural
Networks, 36:35–45, 2012.

[5] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

[6] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-of-the-art.
Evolutionary Computation, IEEE Transactions on, 15(1):4–31, Feb 2011.

[7] S. Otte, D. Krechel, and M. Liwicki. JANNLab Neural Network Framework for Java.
In Poster Proceedings Conference MLDM 2013, pages 39–46, New York, USA, 2013.
ibai-publishing.

[8] B. Roeschies and C. Igel. Structure optimization of reservoir networks. Logic Journal of
IGPL, 18(5):635–669, 2010.

[9] G. Holzmann and H. Hauser. Echo state networks with filter neurons and a delay & sum
readout. Neural Networks, 23(2):244 – 256, 2010.

[10] D. Koryakin and M. V. Butz. Reservoir sizes and feedback weights interact non-linearly
in echo state networks. Artificial Neural Networks and Machine Learning - ICANN 2012,
7552:499–506, 2012.

70

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

	papers1-10
	ESANN2015-68_2
	ESANN2015-88_3
	ESANN2015-35_2
	ESANN2015-26_3
	ESANN2015-100_3
	ESANN2015-73_4
	ESANN2015-15_9
	ESANN2015-27_4
	ESANN2015-65_12
	ESANN2015-33_6

	papers11-20
	ESANN2015-118_2
	ESANN2015-31_3
	ESANN2015-39_3
	ESANN2015-54_5
	ESANN2015-56_3
	ESANN2015-91_4
	ESANN2015-12_3
	ESANN2015-77_3
	ESANN2015-107_2
	ESANN2015-81_2

	papers21-30
	ESANN2015-135_2
	ESANN2015-125_3
	ESANN2015-90_4
	ESANN2015-23_5
	ESANN2015-126_2
	ESANN2015-29_2
	ESANN2015-67_2
	ESANN2015-2_2
	ESANN2015-13_2
	ESANN2015-52_8

	papers31-40
	ESANN2015-104_3
	ESANN2015-83_2
	ESANN2015-114_4
	ESANN2015-14_2
	ESANN2015-130_2
	ESANN2015-106_2
	ESANN2015-87_3
	ESANN2015-132_2
	ESANN2015-109_2
	ESANN2015-99_2

	papers41-50
	ESANN2015-131_4
	ESANN2015-50_2
	ESANN2015-95_2
	ESANN2015-10_3
	ESANN2015-41_2
	ESANN2015-48_2
	ESANN2015-102_4
	ESANN2015-18_1
	ESANN2015-43_3
	ESANN2015-49_3

	papers51-60
	ESANN2015-86_3
	ESANN2015-22_2
	ESANN2015-113_3
	ESANN2015-24_5
	ESANN2015-32_2
	ESANN2015-80_2
	ESANN2015-84_2
	ESANN2015-120_2
	ESANN2015-40_2
	ESANN2015-61_5

	papers61-70
	ESANN2015-46_4
	ESANN2015-5_4
	ESANN2015-21_3
	ESANN2015-112_2
	ESANN2015-82_9
	ESANN2015-85_3
	1 Introduction
	2 Data analytics
	2.1 Measurement data analyses (Time series)
	2.2 Observation data analysis (OS labels)

	3 Selection of classifiers for the best performance
	4 Conclusions

	ESANN2015-79_3
	ESANN2015-66_10
	ESANN2015-76_4
	ESANN2015-115_2

	papers71-80
	ESANN2015-124_3
	ESANN2015-116_2
	ESANN2015-122_4
	ESANN2015-89_4
	ESANN2015-101_10
	ESANN2015-136_4
	ESANN2015-128_3
	ESANN2015-127_2
	ESANN2015-16_1
	ESANN2015-37_6

	papers81-90
	ESANN2015-97_2
	ESANN2015-134_5
	ESANN2015-74_2
	ESANN2015-75_3
	ESANN2015-137_4
	ESANN2015-28_4
	ESANN2015-64_2
	ESANN2015-108_1
	ESANN2015-58_3
	ESANN2015-7_4

	papers91-96
	ESANN2015-111_4
	ESANN2015-45_2
	ESANN2015-34_2
	ESANN2015-110_2
	ESANN2015-59_4
	ESANN2015-69_7

	proceedings2015front.pdf
	pages i-vi
	pages vii-viii
	page ix
	pages x-xii

