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Abstract. In this paper, we introduce a new and straightforward criterion
for successive insertion and deletion of training points in sparse Gaussian
process regression. Our novel approach is based on an approximation of
the selection technique proposed by Smola and Bartlett [1]. It is shown
that the resulting selection strategies are as fast as the purely randomized
schemes for insertion and deletion of training points. Experiments on
real-world robot data demonstrate that our obtained regression models are
competitive with the computationally intensive state-of-the-art methods in
terms of generalization accuracy.

1 Motivation

Today, Gaussian processes are widely used non-parametric Bayesian modeling
techniques [2]. However, the applicability of full Gaussian process regression
(GPR) to large scale problems with a high number of training points n is limited
due to the unfavourable scaling in training time and memory requirements. The
dominating factors are usually O(n3) costs for inversion of a dense covariance
matrix K ∈ Rn×n between all available training points and the O(n2) space
required to store it in memory. Furthermore, the full GPR model needs O(dn)
costs for predicting a test instance, where d is the data dimension.

To overcome these limitations in computational costs and storage requirements,
various sparse likelihood approximations have emerged recently, whose relations
have been formalized in the unifying framework [3]. The fully independent
training conditional (FITC) approximation [4] uses a flexible subset of virtual
training points to generate a sparse GPR model and optimizes the virtual training
points along with all other hyperparameters. In contrast, the deterministic
training conditional (DTC) approximation selects a representative subset of real
training points, the so-called active points, that induce the sparse approximation.
Therefore, many greedy selection criteria were proposed, e.g. in [1, 5, 6, 7,
8, 9]. Many of these methods have significantly higher computational costs
than randomized selection, but in exchange yield significantly better results,
since random selection typically leads to over- or underfitting. In addition to
a selection heuristic, Csató and Opper [9] introduced a highly similar heuristic
for deletion of training points from the active set. They show that removing
active points can considerably reduce the prediction times for test points with
only slightly decreasing generalization accuracy. All of the insertion and deletion
methods mentioned above either lack computational speed, have high memory
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requirements, or lack of modeling accuracy. Moreover, if the regression model
generation is based on a purely randomized selection or on a method with a small
randomly selected subset of remaining training points for criteria evaluation, e.g.
as done by [6, 8], the performance in hard regression tasks deteriorates.

Our newly developed method is closely related to the inclusion heuristic by
Smola and Bartlett [1], but some reasonable assumptions reduce the computa-
tional costs to the level of randomized selection without a huge loss in model
accuracy. Compared to the deletion criterion from Csató and Opper [9], our
approach offers nearly the same prediction performance under considerably lower
computing time.

2 Sparse Gaussian Process Regression

Let D = (y,X ) be the training data set, where y ∈ Rn is a vector of noisy
realizations of the underlying scalar function f(xi) = fi, obeying the relationship
yi = fi+εi with Gaussian noise εi ∼ N (0, σ2). Furthermore, the n training inputs
xi ∈ Rd are row-wise summarized in X ∈ Rn×d. Our goal is the construction of a
sparse GPR model which estimates the relationship above. Let I be the index set
of size m of all active points xi with i ∈ I, i.e. training points that represent the
sparse approximation. As shown in Seeger et al. [5], through a centered Gaussian
prior distribution with covariance matrixKI ∈ Rm×m and an information optimal
likelihood approximation with respect to the Kullback-Leibler divergence we get
the approximated Gaussian posterior distribution

QI (f | y,X ) = N
(
f
∣∣ V TL−TM βI , K − V

TV + σ2V TM−1V
)

(1)

for all training points with the estimated mean vector µI = V TL−TM βI ∈ Rn.
Here, L ∈ Rm×m is the lower Cholesky factor of KI , V = L−1KI,· ∈ Rm×n,

M = σ2I + V V T ∈ Rm×m with the Cholesky decomposition M = LML
T
M ,

βI = L−1M V y ∈ Rm and αI = L−TL−TM βI ∈ Rm for fixed I of size m. Due to
the matrix-matrix multiplications, the training complexity of this sparse GPR
model is O(nm2). Predicting the mean for one test point is feasible in O(dm).

Most of the GP approximation techniques differ in the way, how the active
set XI is selected [3]. Usually, the remaining point that has the maximum gain
with respect to an insertion criterion ∆i is selected. One of the best selection
methods is proposed by Smola and Bartlett [1]. They select the remaining
point that maximizes the posterior likelihood for the admission of the prediction
vector α ∈ Rn of the full GP under the given data set D. This is based on the
transformation of α = K−1f and leads to the equivalent formulation

τI = min
αI

(
1

2
αT
I LMLTαI −αT

I LV y

)
= −1

2
βT
I βI (2)

in the sparse sense as pointed out in [5]. In the following, let I ′ = I ∪ {i}. The
decrease in the sparse posterior likelihood derived from (2) defines the selection
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criterion by Smola and Bartlett (SB), i.e.

SB∆i = τI − τI′ =
1

2
β2
I′,i , (3)

for a remaining point and with the new component βI′,i of the updated vector
βI′ . Due to its high computational costs of O (nm) per remaining point for
the criterion calculation, they only evaluate it for a randomly chosen subset of
cardinality κ. The authors of [1] recommend κ = 59, which they justify with
a probabilistic argument. Nevertheless, they end up with high computational
costs of O

(
κnm2

)
for the whole DTC approximation. The conjugation of this

selection heuristic defines also a corresponding deletion criterion SB∇i which
leads to O

(
m2

)
costs per active point. Always the active point according to the

posterior model (1) with minimal loss in terms of a deletion criterion is removed.

3 Maximum Error Criterion to Speed up Sparse GPR

In this section, we first discuss the successive inclusion of training points into the
active subset. To include a remaining point xi in the active subset, we have to
update the Cholesky factors L, LM , the matrix V , respectivelyKI,·, the vector βI ,
and the mean µI of the posterior distribution (1), as shown in [5]. The costs for the
sequential insertion in the m-th iteration are O (nm). Our approach maximizes
also the evidence of the current posterior model, which is similar to the greedy
scheme (3). This strategy leads to successively maximization of the Euclidean
norm of the vector βI′ , which is equivalent to iteratively minimizing ‖y − µI′‖
for the normalized vector y and thus approximately normalized µI′ , since we

have ‖βI′‖2 = βT
I′βI′ = yTµI′ after an inclusion. Due to the equivalence of norms

in finite dimensional spaces it holds true that ‖y − µI′‖ ≤ nmax
∀j

∣∣yj − µI′,j

∣∣. In

the limit, i.e. with increasing m, we have µI′≈µI . Thus, we define

ME∆i =
∣∣yi − µI,i∣∣ (4)

as our new selection criterion and select the remaining point that has the maximal
error (ME) under the current posterior model (1). This computational efficient
approach has O (1) costs for criterion calculation per remaining point. The
intuitive convergence assumption obviates the update of the posterior model for
each remaining point as needed for the selection criterion (3).

In the following, we present our maximum error deletion criterion for the
removal of active points. Typically, the maximum number of active points m is
predefined and directly influences computing time (quadratically) and memory
requirements (linearly). The deletion of appropriate active points improves the
predictive performance without significantly deteriorating the existing model
quality, e.g. see [9]. It also provides a way to reduce redundancy in the greedily
selected active subset. Similar to the presented insertion strategy, we opt for a
greedy criterion to successively delete active points. Note that deleting an active
point does not necessarily lead to a state that was previously encountered in iter-
atively inserting training points. The reason is that the underlying assumptions
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for greedy insertion and deletion differ considerably. While the inclusion strategy
uses Cholesky updates, QR-downdates based on the factorization QR = LMLT

are used for deleting active points since they offer higher numerical stability.
Inspired by the criterion of [9], we define our new deletion criterion as follows.
Beginning with an already selected subset determined by I we remove the active
point that has the minimal value with respect to the deletion criterion

ME∇i =
∣∣
ME∆i αI,i

∣∣ , (5)

where now αI = R−1QTKI,·y ∈ Rm. Note that we use the maximum error

ME∆i instead of the expensive projection-induced error as in [9]. Thus, we obtain
the same low complexity for deletion criterion evaluation of O (1) per active point.
Here, we coupled the error of an active training point at the current sparse model
(1) with its importance under prediction. So our deletion criterion controls the
current model accuracy and the generalization capability. A longer version of
the paper will include more details about the entire learning process.

4 Evaluations

In this section, we compare our maximum error selection and deletion criteria
against many other methods for the DTC approximation. Furthermore, we
consider the FITC approximation [4] to present an extensive comparison. For
all experiments we use the stationary squared exponential covariance function
with automatic relevance determination, see [2]. For evaluations, we choose a
benchmark data set from the SARCOS master arm (13922 training and 5569
test points), see [10]. Each point of the data set has 21 input dimensions and 7
targets, i.e. one moment for each degree of freedoms (DoF) of the robot arm.

The convergence trends with respect to the NMSE (normalized mean squared
error) of many sparse GP approximations on the first DoF from the real SARCOS
test data are shown in Figure 1(a). The NMSE results for randomized selection
in the DTC approximation are averaged over ten runs, but for the DTC deletion
schemes in Figure 1(b) we use only one random model training to demonstrate
all effects caused through the criteria. The NMSE results, the complete learning
times in Figure 1(c), and training times for the deletion criteria, see Figure 1(d),
were captured every tenth active or virtual training points for all learning curves.
The inclusion curves by Smola and Bartlett [1] and Quiñonero-Candela [8] nearly
match in costs and NMSE results. The variational framework by [6] leads to
constant higher effort in the learning process, e.g. compared to the curve by [8],
since the regularization term increase the costs for gradient based optimization
techniques. Our maximum error approach outperforms all DTC selection criteria
with respect to training times for low NMSE values on test data, see Figure
1(e). For large active set sizes we nearly reach the same accuracy as the selection
heuristic by [1] or [8] and outperform the matching pursuit approach by [7], see
Figure 1(a). Regarding the right column in Figure 1, we outperform the DTC
deletion criterion by [1] and the randomized version with respect to generalization
accuracy. We also yield a good compromise between low computational effort
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(a) NMSE for sparse GP approximations.
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(b) NMSE for various DTC deletion criteria.
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(c) Learning time for sparse model selection.
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(d) Deletion time of DTC type approaches.
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(e) Selection time of DTC methods vs. NMSE.
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(f) Deletion time of DTC methods vs. NMSE.

Figure 1: Convergence trends in NMSE and learning times on the first degree of
freedom (DoF) from the real SARCOS test data for many sparse GP approxima-
tions, i.e. by Smola and Bartlett (SB) [1], by Seeger et al. (IG) [5], by Titsias
(VAR) [6], by Keerthi and Chu (MPA) [7], by Quiñonero-Candela (QC) [8], and
by Csató (CS) [9] (left column). The right column shows different deletion criteria
of the DTC approximation. Our novel strategies (ME) give the best trade-off
between low computing times and accurate prediction, i.e., see 1(e) where we
yield the lowest learning curve.
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and high prediction precision as shown in Figure 1(f). All intelligent deletion
schemes yield better NMSE results than the randomized deletion.

5 Conclusion

Here we proposed a very fast greedy insertion and deletion scheme for sparse GPR
or, more precisely, for the DTC approximation. Our criterion is based on the
maximum error between model and training data and we provided justification
for this choice. It leads to a stable and efficient way for automatic sparse
model selection. The primary advantage of our maximum error greedy selection
is the combination of high accuracy with low computational costs for criterion
calculation of all remaining points. In contrast, the insertion methods in [1, 6, 7, 8]
have to select from a small random subset of remaining points for criteria
evaluation. This random restriction can lead to poorer results on especially
harder regression tasks. Even without caching, we are already nearly as fast as a
randomized insertion. For the removal of active points our approach nearly reaches
the accuracy of Csató’s deletion method, outperforms the deletion criterion by
[1], and is still almost as fast as a randomized removal. Compared to the FITC
approximation [4], all DTC methods lead to higher prediction accuracy and
lower learning times. More details about sparse GPR approximations and the
relationships between the various criteria can be given in an extended version of
the paper.
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[3] J. Quiñonero-Candela and C. E. Rasmussen. A Unifying View of Sparse Approximate
Gaussian Process Regression. In R. Herbrich, editor, JMLR, pages 1939–1959, 2005.

[4] E. L. Snelson and Z. Ghahramani. Sparse Gaussian Processes Using Pseudo-Inputs. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, NIPS, volume 18, pages 1257–1264, 2006.

[5] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast Forward Selection to Speed up
Sparse Gaussian Process Regression. In C. M. Bishop and B. J. Frey, editors, AISTATS,
pages 205–212, 2003.

[6] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes.
In D. van Dyk and M. Welling, editors, AISTATS, pages 567–574, 2009.

[7] S. S. Keerthi and W. Chu. A Matching Pursuit Approach to Sparse Gaussian Process
Regression. In Y. Weiss, B. Schölkopf, and J. Platt, editors, NIPS, volume 18, pages
643–650, 2006.
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