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Abstract. A novel approach for robust visual terrain classification by
generating feature sequences on repeatedly mutated image patches is pre-
sented. These sequences providing the feature vector progress under a cer-
tain image operation are learned with Recurrent Neural Networks (RNNs).
The approach is studied for image patch based terrain classification for
wheeled robots. Thereby, various RNN architectures, namely, standard
RNNs, Long Short Term Memory networks (LSTMs), Dynamic Cortex
Memory networks (DCMs) as well as bidirectional variants of the men-
tioned architecture are investigated and compared to recently used state-
of-the-art methods for real-time terrain classification. The results show
that the presented approach outperforms previous methods significantly.

1 Introduction

For autonomous navigation in outdoor environments terrain classification is an
important ability of a mobile robot. However, it is a challenging task, because
terrain may look quite different at different spots, there are illumination changes
and motion blur. It is therefore crucial to have a classifier that can cope with
this kind of data and reliably delivers good results. Since classification results
are needed for further tasks like path planning, the classifier should also provide
real-time efficiency.

In previous work, we investigated terrain classification for driving and flying
robots [1, 2]. In addition to various feature descriptors, different classifiers have
been tested. Here, Random Forests (RFs) [3], an ensemble learning method,
always performed better than the other tested classifiers, like, e.g., SVMs.

The contribution of this paper is twofold. First, instead of using single fea-
ture vectors for the terrain classification, feature progression sequences are used.
Hereby, such a sequence is gained by repeatedly mutating the original image
patch, e.g, sub-sampling or blurring, and recomputing the feature vector after
each mutation. Second, these sequences are classified with several recurrent neu-
ral network architectures, namely, standard Recurrent Neural Networks (RNNs),
Long Short Term Memories (LSTM) [4] and Dynamic Cortex Memories (DCMs)
[5] as well as bidirectional variants of them.
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We show that the combination of feature progression sequences and recur-
rent architectures provide superior classification results and outperform RFs on
terrain classification for wheeled robots significantly.

2 Visual Feature Progression

In the following we outline a methodical concept that enables us to utilize the
progression of a feature vector under a repeatedly mutated image patch. Con-
sider therefore Figure 1.
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Fig. 1: Illustration of the feature progression sequence acquisition. The original
image patch R is consecutively mutated T − 1 times using a mutation operation
g. For each of those T image patches a feature vector using a given feature
generator Ψ is computed.

The procedure starts with a given image patch R. A feature vector for
the patch R is computed with a feature generator Ψ, e.g., texture features like
LTP [3] or TSURF [1]. Then the patch is mutated with an image operator
g. In this paper the experiments are based on a scale and blur operator as
it is used to build Gaussian image pyramids. Hereafter, a feature vector of the
mutated patch is computed. This process is performed iteratively until T feature
vectors are generated. It is important to our approach that for the original patch
and each of its mutated instances, the feature vector is computed in the same
way providing the same dimension. Due to the overall process, a sequence is
computed representing the successive feature vector progression under g.

It should be mentioned that in [6] experiments were presented, where digit
and object recognition with bidirectional LSTMs was performed on sequences
with repeatedly blurred images. However, learning pure image data instead of
texture features was successful on our data.

3 Recurrent Neural Networks

With the introduction of the Long Short Term Memory (LSTM) [4] artificial
neural networks (ANNs), especially recurrent neural networks (RNNs), enjoy
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again emerging popularity. Due to their cyclic connections RNNs can learn tem-
poral dependencies in data sequences. In contrast to standard RNNs, networks
containing LSTM blocks [4], which are themselves a special kind of a recurrent
network that can be seen as differentiable memory cells, are even able to deal
with long time-lag problems. But LSTMs provide additional abilities. These
are, for instance, that they are able to learn highly non-uniformly compressed
sequences [7],[8], where the position of important input events is difficult to
predict, or the adequate recognition of even noisy sequences [8].

Besides RNNs and LSTMs, also networks consisting of recently introduced
Dynamic Cortex Memorys (DCMs) [5] are applied in this paper. A DCM block
is in principle an LSTM block with forget gates [9] and peep-hole connections [10]
but has several novel weighted connections within each block, i.e., connections
from each gate to each other gate, and a self-recurrent connection for each gate.
Nonetheless, even if there are more connections per block, DCM networks tend
to require less blocks and, thus, less weights than LSTM networks to achieve
similar or even better results. In fact DCMs were shown to converge faster than
LSTMs during training and generalize better. For both LSTMs and DCMs the
gradient is computed with back-propagation through time (BPTT) as proposed
in [11].

In classical unidirectional recurrent architectures, only a “past” context is
provided. To provide also a “future” context bidirectional recurrent neural net-
works (BRNNs) were introduced [12, 11] by keeping separate hidden layers, one
for forward computation and the other one for backward computation. The past
context of the forward layer and the future context of the backward layer are
present in the output layer at each time step.

The network architectures contain two hidden layer (or three in case of bidi-
rectionality). The first hidden layer is just a simple non-recurrent fully-connected
non-linear layer that can be seen as a kind of input reduction to significantly
reduce the relatively high input dimension of the data passed into the recurrent
hidden layer. The recurrent layer consists of non-linear units, LSTM blocks or
DCM blocks, respectively. In the bidirectional architectures the recurrent layer
is duplicated, such that there is one layer for the past and one for the future
context. As general hidden activation function a scaled and shifted sigmoid
covering the interval [−1, 1] is used in all architectures with exception of the
gates in LSTMs and DCMs, which are activated with a standard sigmoid. All
architectures use softmax activation in the output layer.

4 Experiments

Our experiments are based on images taken by a mobile robot driving in an out-
door environment with four terrain types, namely asphalt, cobblestones, grass,
and gravel (see Fig. 2). The camera was mounted at a height of approximately
45 cm and at an angle of about 15 degrees to the horizontal. From these VGA
images, we hand-labeled 135 images to get ground truth. Each image is then
divided into equally–sized grid cells with a cell length of 30 pixels. There is
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Fig. 2: The mobile robot used for ground image acquisition (left). The four
terrain classes used in the ground dataset (right). From left to right and top to
bottom: Asphalt, cobblestones, grass, gravel

great variation even within the grid cells of the same terrain type, enhanced by
perspective distortion caused by the camera angle.

For feature extraction we use Local Ternary Patterns (LTP) [13], since pre-
vious work has shown that they provide good results for this kind of data [14].
LTPs are an extension of Local Binary Patterns (LBP) [15] and LBPs are essen-
tially histograms of binary-encoded differences in pixel intensity. While LBP is
parameter-free, LTP has a parameter to threshold intensity differences into three
categories and yields a 512-dimensional feature vector. The resulting dataset
consists of 4,000 samples with 1,000 samples per class. Furthermore 10 fold
cross-validation was applied. To train the neural networks, we used gradient
descent with momentum term. The learning rate was set to 0.001, the momen-
tum rate to 0.9 and the maximum number of epochs was limited to 100 (but
rarely reached due to early stopping). All results in this paper concerning neural
networks are achieved using the JANNLab framework [16].

5 Results

Table 1 shows the classification accuracy results yielded by RFs and Table 2
shows results yielded by various various RNNs. All recurrent architectures used
a reduction layer size of 16 neurons, which we figured out to be good choice. It
can be clearly identified that all tested RNN architectures are significantly better
than the RFs tested on this dataset. The best accuracy achieved by an RF with
200 trees is about 76.88%, while the best neural network, a BRNN with a hidden
layer size of 16, achieved an accuracy of 83.49%. It should be mentioned that
we even tested RFs with 1,000 and more trees as well, but this did not further
improve the results. Nonetheless, it is conspicuous that all networks providing a
capacity of at least eight cells or four blocks respectively, yield nearly the same
performance regardless whether they are bidirectional or use memory blocks like
LSTMs or DCMs. However, during the experiments the latter kept much more
stable when varying learning and momentum rate. We also observed that on the
given training data DCMs converged slightly faster than LSTMs.
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Table 1: Classification results for Random Forrests
Number of trees Sequence Length Test Accuracy [%]

100 1 71.03 ± 2.77
200 1 72.05 ± 2.41
500 1 71.70 ± 2.64

100 8 75.85 ± 1.65
200 8 76.88 ± 1.53
500 8 76.83 ± 1.35

Table 2: Classification results for various RNN architectures

Architecture Size
Test accuracy [%]

(unidirectional) (bidirectional)

RNN 2 72.71 ± 1.66 80.59 ± 1.08
RNN 4 80.50 ± 1.08 82.38 ± 1.00
RNN 8 82.23 ± 1.23 83.37 ± 1.22
RNN 16 83.10 ± 1.01 83.49 ± 1.38
RNN 32 82.89 ± 1.03 83.44 ± 1.38

LSTM 2 78.75 ± 1.41 82.02 ± 1.12
LSTM 4 82.27 ± 1.15 82.59 ± 1.23
LSTM 8 82.78 ± 1.17 82.93 ± 1.02
LSTM 16 83.20 ± 0.84 83.04 ± 1.00
LSTM 32 83.06 ± 0.99 83.03 ± 1.00

DCM 2 78.82 ± 1.28 82.03 ± 1.32
DCM 4 82.47 ± 1.01 82.42 ± 1.19
DCM 8 82.75 ± 0.94 82.78 ± 1.11
DCM 16 83.05 ± 0.99 83.22 ± 1.01
DCM 32 83.21 ± 0.95 83.40 ± 0.88

Moreover, we experimented with Multi-Layer Perceptrons (MLPs). While
they yielded (after some fine tuning) even better results than RFs on the non-
sequential data, they failed on the sequences, due to the large amount of required
weights, which results in strongly over-fitted networks. This observation paired
with the results from above lead us to the assumption that probably the most
important aspect why RNNs perform so well on this task is the effect of shared
weights, forcing the networks to generalize more from the given data. However,
their performance drops when the vector order within the sequences is changed,
which hints at the importance of the recurrence.

6 Conclusion

In this paper we presented an approach for robust visual terrain classification.
In contrast to previous approaches not only single feature vectors were com-
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puted, but sequences representing the progression of feature vector over repeat-
edly applied image mutations. This acquisition method in combination with the
recurrent neural networks for the classification improved the recognition accu-
racy compared to previously used RFs from 76.88% to 83.49% on terrain image
patches recorded by a wheeled robot.
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