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Abstract. This paper proposes a novel representation of the parameters
of neural networks in which the weights are projected into a new space
defined by a radius r and a vector of angles ©. This spherical representa-
tion further simplifies the multi-objective learning problem in which error
and norm functions are optimized to generate Pareto sets. Using spherical
weights the error is minimized using a mono-objective problem to the vec-
tor of angles whereas the radius (or norm) is fixed. Results indicate that
spherical weights generate more reliable and accurate Pareto set estimates
as compared to standard multi-objective approach.

1 Introduction

It has been well established in the literature that the general problem of learning
from data has a multi-objective nature [1, 2]. Artificial Neural Networks (ANNs)
learning should be accomplished by minimizing both the empirical risk Rey,,(W)
and the model capacity h [1, 2]. Since Reynp(W) and h have a conflicting behavior
it is not possible to jointly minimize them, so a trade-off is required. According
to this formulation, ANNs model selection should be accomplished amongst the
Pareto set solutions of Remp(W) and h. From this perspective, the general
problem of model induction from data can be regarded as a trade-off problem,
however, the candidate solutions should be generated prior to model selection.

In order to solve the bi-objective problem it is usual to adopt a constrained
optimization approach by minimizing norm with constrained error [3] or by min-
imizing error with constrained norm [2]. Constrained optimization of non-linear
objective functions, however, has well-known numerical and convergence-related
difficulties. With the goal of overcoming some of them, in this paper ANNs
multi-objective learning is reformulated and presented as an unconstrained op-
timization problem.

The principle of the proposed method is based on a spherical representation of
Multi-Layer Perceptrons (MLP), so that error minimization can be accomplished
for different radius r; of the n-dimensional circle w} + w3 + --- + w? = r3. The
geometrical concept is intuitive and can be observed in the schematic example of
Figure 1. Inequality constraint methods such as the e-constrained [2] minimize
the error within the disc [|w||* < r3. Equality constraint approaches [4] minimize
the error in the circle [[w|[* = 7. In both approaches, the optimization problem
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is then solved for pre-established values of r; so that a portion of the Pareto
set is generated. Once the set of Pareto set solutions is obtained, a decision
making procedure picks-up one of them according to a selection criteria. The
method proposed here has no constraints since the weights are represented as
spherical coordinates and the independent variables to be optimized are actually
the angles of the spherical representation for a given radius r;.

(wil
[

Circle with radius [|w||=4
Circle with radius [|w||=2

Disc with radius [|w||= 2

Fig. 1: Mapping from parameter’s space to objective’s space by constraining the
solutions to the region ||w|| < 7.

The structure of the present paper is as follows. The spherical representation
is presented in section 2. Section 3 presents the backpropagation algorithm using
spherical weights. Section 4 presents results, and discussion and conclusion are
presented in section 5.

2 Spherical weigths

We consider a multi-layer perceptron with one hidden layer and one linear output
neuron. Thus, the neural network output equation given an arbitrary input

vector x of dimension N, xT = [z1,...,2y] is given by:
H+1 N+1
Yoo = D i fI 1D (Wi - ) (1)
i=1 j=1

where H is the number of hidden neurons, N is the number of inputs, 1;; is
the input layer weights, ¢; is the output layer weights and f” is the activation
function of the hidden layer neurons. The bias components were augmented to
the neurons inputs and weights as: xy4+1 = 1, f1]31+1 =1, fﬁ,H = 0 where f" is
the hidden function derivative.

Let vector w be composed of all input and hidden layer weights, w
1, QH+1, Y115 -+, UN+1,H41, . Hereafter, each element of weight vector is
represented by w;. Therefore, the norm of the weights is written as ||w||> =
> w?. Using spherical weights we refer to the norm of the weights as the radius
r, where 72 = ||w||2. For instance, if the weight vector is of dimension 2, i.e.,
w! = [wy,ws], then it can be represented using spherical weights by radius 7
and angle § as wl' = [rsin®,r cosf]. In this case, the parameter of interest is ¢

T
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which can be adjusted to minimize the error function. In general, the elements
of vector w, of size n, can be written as functions of n — 1 angles which define

vetor ©T = [0y,...,0,_1], and the radius r as shown in Equation 2.
7 sin(61) i=1.
w; =g T HZ:_:11 cos(0x)sin(6;) i=1,2,...,n—1. (2)
r TI., cos(6x) i=n.

Recall that n is the dimension of the weight vector w, i.e., the sum of the weights
in both hidden and output layers. From Equation 2 the estimates of the angles
0; (0 < 6; < 2m) can be calculated from the weight values, as shown in Equation3

-1 w; . ) < 1
6 — tan_1 Z;+llsln(91+l)) 1 <i< ;L 1 3
—=1 i=n-—1.
W,

The use of spherical weights creates a new subset of parameters, ©, of di-
mension n — 1 which can be optimized in order to find the optimal weights of
the neural network with minimum error. In this new space of parameters, the
norm of the weights, or radius, is fixed. Therefore, the minimization of the error
function, with respect to the vector of angles © can be seen as a mono-objective
optimization problem without any constraint. On the other hand, the resulting
weights have a fixed norm which, in fact, represents, a constrained optimization
solution in the original space (w).

3 The backpropagation algorithm using spherical weights

The standard backpropagation algorithm aims at minimizing the error function
by updating the vector of weights in the opposite direction of the gradient at
point wq, where wq is the initial weight vector. The weight update equation is
shown in Equation 7.

0y e?
Wil = W — Q- %Vlw (4)

where Y €? is the error function and « is the learning rate parameter. In order

to update the vector of angles we simply apply the standard chain rule with

2 2
respect to the gradient: dgeei = dgwei X ‘é—gﬁ. Using matrix notation we define

matrix T = g—g, as shown in Equation 5. A simpler approach to calculate the

elements of matrix T using elements of the weight vector w is shown in Equation

6.
Ow1 . dwy,
691 801
ow
T = 50 = : : (5)
Ow1 . Owy,
80n71 66n71
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0, t=2,....,n;5=1,...,i—1

15—, cosOy i=7j
T, = k=19 : o 6
- —w; o i=1,....n—1j=i+1,...,n (6)

where w* = w/r. Therefore, the backpropagation update equation using spher-
ical weights is written as:

@k+1 = ®k —a-Tx g|®k (7)

2
where g is the gradient vector, [g]; = %.

4 Results

The proposed spherical method was compared to the multi-objective (MOBJ)
algorithm [2]. Both algorithms were applied to regression and classification
problems that are listed in Table 1. For each regression problem, 100 samples
were generated. A Gaussian noise with zero mean and o2 = 0.22 variance
was included to the output. In addition, 12 classification problems were used.
Three of them represent synthetic data, a four-class classification problem [2]
and two obtained in R package clusterSim: two.moon and circles2. The other
nine datasets are from real problems chosen from the UCI Repository [7] except
banana dataset that was obtained from Kell repository. For each data set, a five-
fold cross validation procedure was applied. Within the training set, i.e., the four
blocks, 20% of the data was randomly chosen as validation set. One block was
used as test set. Both MOBJ and spherical algorithms were applied to a multi-
layer perceptron with 10 hidden nodes, with hyperbolic activation functions.
The Pareto set was estimated using a grid of 30 equally spaced norm values in
the range 0 to 20 for the regression problems, and 0 to 50 for the classification
problems. We evaluated the MOBJ and spherical results by comparing the
Pareto sets generated by each method, and evaluating the mean squared error
(mse) and accuracy (acc) with respect to the test set.

The MOBJ and spherical Pareto sets were compared using the dominated
hypervolume or S-Metric statistic [6]. This statistic calculates the hypervolume
between a multidimensional region, determined by the Pareto solutions, and a
dominated solution used as the reference point. This metric was chosen by taking
into consideration two important measures to compare Pareto sets: convergence
and diversity.

Figure 2 illustrates the ability of the spherical method to generate improved
estimates of the Pareto set as compared to MOBJ, using the bupa data set. The
figure shows average values of the Pareto sets and the average values of selected
solutions for each method, using the cross validation folds. The dominated
solution used as reference point is also shown in the figure. It can be seen that
the Pareto set generated using the spherical method has smaller errors than
the Pareto set generated using MOBJ and, therefore, it is more accurate than
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MOBJ. It can be seen that in the lower norm region the two methods have
similar solutions. Nevertheless, the spherical Pareto set dominates the MOBJ
Pareto set. It is worth noting that the selected Pareto solution using MOBJ

share a similar error value as compared to the spherical solution. However, the
spherical solution has a smaller norm value.

Bupa

LOoo0o

© Pareto MOBJ

O Pareto Spherical
4 Ref Solution

« Selected MOBJ

= Selected Spherical

o
4pooBofs

norm
o
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Fig. 2: Pareto sets generated by MOBJ and spherical weights for bupa data set.

Table 1 shows average values of the hypervolume statistic (Hv), mean squared
error (mse) for regression data sets, and test set accuracy (Acc) for classifica-
tion data sets, using the cross validation procedures. Standard deviation values
are shown in parenthesis. N is the sample size and D is the number of input
variables.

Values of Hv, mse and Acc were used to compare the Pareto sets and the
selected solutions. Furthermore, the Wilcoxon Signed-Rank Test was applied,
as recommended in [5], to compare Hv and Acc results. The test evaluates
whether the differences of the medians between MOBJ and spherical methods
are statistically significant, at a-level. We used a = 0.01. Large values of Hv
and Acc, and smaller values of mse are shown in bold type in Table 1. It can be
seen that the spherical method achieved the best performance in most regression
and classification problems, and the best Hv values. P-values of the Wilcoxon
test were 0.0003 and 0.35758 for Hv and Acc, respectively. Thus, the null
hypothesis was rejected for the Hv statistic. Therefore, it can be concluded that
our method generates more efficient Pareto sets than the MOBJ. Nevertheless,
both methods generate solutions with similar accuracies (Acc).

5 Conclusions and Discussions

Theoretically, the Pareto set represents the region of the objectives space where
non-dominated solutions are located. It also represents the best subset of solu-
tions from which one final solution with maximum generalization ability, or min-
imum error and minimum complexity, is chosen. In practice, many algorithms
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Table 1: Regression and classification results

[ MOBJ [ Spherical

Dataset N D [ Hv (sd) mse(sd) [ Hv (sd) mse(sd)
F1(2) = sin(e) 100 1 | 8.6(0.4) 004(0.01) | 9.2(0.4) 0.03(0.01)
F2(2) = (¢ — 2) (25 + 1)/(1 + 22) 100 1 | 31.9(0.7) 0.08(0.07) | 37.6(1.0) 0.06(0.04)
f3(x) = 4.26(e 7% — 4e 2% 4 3.73%) 100 1 3.6(0.5)  0.05(0.01) 3.9(0.5) 0.05(0.02)
fa(m) = (e702%) 4 (20702 100 1 | 7.6(0.7) 0.12(0.03) | 10.5(0.7) 0.05(0.01)
sin(2m - 0.2z — 7/4) — 0.27)
f5(x) = sin(wx)/(nz) 100 1 3.1(0.3) 0.60(0.03) 6.6(8.1) 0.42(0.24)

N D [ Hv (sd) Acc(sd) [ Hv (sd) Acc (sd)
gaussian 4 classes 200 2 | 51.3(5.4) 84.5(4.8) | 57.8(6.3) 82.5(7.7)
circles2 200 2 | 37.8(0.8) 100(0.0) | 49.2(0.6) 100(0.0)
two.moon 200 2 | 41.0(0.5) 100(0.0) | 43.3(0.5) 98.5(2.2)
breast cancer 569 31 | 34.7(0.1) 96.5(1.1) | 36.2(0.1) 97.0(1.5)
diabetes 768 8 | 17.1(0.5)  77.2(3.0) | 19.3(0.9)  77.3(3.4)
sonar 208 60 | 42.9(0.4)  84.6(7.1) | 45.1(0.1)  85.1(4.8)
bupa 345 6 | 11.1(1.2)  72.2(4.4) | 15.9(2.1)  74.2(4.9)
vertebral column 310 6 | 20.8(0.4) 86.1(4.4) | 25.7(1.1) 85.8(4.5)
heart diseases 270 13 | 34.9(0.8) 83.3(3.7) | 41.5(0.4) 83.3(3.6)
blood transfusion 748 4 5.8(0.2) 77.8(5.3) 6.3(0.3) 77.9(5.0)
banana 5300 2 | 10.6(0.5)  81.9(2.1) | 24.5(1.5)  88.8(1.3)
australian credit approval 690 14 | 30.0(0.9) 85.7(4.3) | 32.4(1.4) 86.2(4.4)

try to estimate the Pareto set, and most algorithms are based on multi-objective
approaches. We propose a transformation scheme in which the weights of neural
networks are represented by angles. Results show that the optimization of the
angles with respect to the error function generates improved Pareto estimates,
i.e., solutions with smaller errors for fixed norm values as compared to standard
multi-objetive solutions. Our results show that with respect to the error function
a standard multi-objective algorithm (MOBJ) generates solutions which are very
similar to the solutions generated using spherical weights. On the contrary, the
spherical weights generates solutions with much smaller complexity, i.e., smaller
norm values.
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