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Abstract. Association football is characterized by the lowest scoring rate of all 
major sports. A typical value of less than 3 goals per game makes it difficult to find 
strong effects on goal scoring. Instead of goals, one can focus on the production of 
shots, increasing the available sample size. However, the value of shots depends 
heavily on different factors, and it is important to take this variability into account. 
In this paper, we use a multilayer perceptron to build a goal expectancy model that 
estimates the conversion probability of shots, and use it to evaluate the scoring 
performance of Premier League footballers.  

1 Introduction 

The open and dynamic nature of football is one of the key features that define the sport. 
The constant fluidity in the movement of the ball and the players makes it a fascinating 
sport to watch and analyse, but at the same time makes it challenging to model and 
evaluate individual and collective behaviours. Other sports like baseball have a clearly 
structured order of play and much weaker dependencies between the actions of different 
players, which helps analysts break down games and isolate performances. 
 Accepting the more intricate dynamics of football, a separate complication is the 
low prevalence of goals: average shot conversion rates typically lie around 10% in 
professional competitions, with less than 3 goals per game as the norm. Game outcomes 
therefore depend on very scarce events compared to the number of other player actions, 
and finding connections between the two requires sampling a large amount of different 
games. A possiblity to increase the number of samples when analysing offensive output 
is to take a step back from goals and consider shots as the target event. Since all goals 
(except for own goals) come from shots, it makes sense to to look at shot production to 
assess offensive success. However, using just the number of shots to measure offensive 
output can be misleading, because the threat that a shot poses to the opposition varies 
depending on factors like location, shot type, power, goalkeeper position, etc. It is 
important to weight shots according to how these factors affect their conversion 
probability so that those with a higher chance of producing a goal are assigned a larger 
offensive impact. 
 The concept of goal expectancy [1] was introduced with this principle in mind. 
By modelling the observed goal conversion of a large sample of these events, a smooth 
probability function can be derived that approximates the underlying expected number 
of times that a shot with certain characteristics will lead to a goal. This is interesting 
from two different perspectives: Firstly, analysing the resulting model may provide 

149

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



insightful information about the relative efficiency of different shooting strategies. 
Secondly, the production of expected goals may be used as a supplement to the 
observed number of goals to more accurately reflect offensive throughput, giving rise 
to a different perspective that alleviates the inherent variability in the shot to goal 
conversion process. 
 In this work, a multilayer perceptron is used to model the success probability of 
shots using real-world data. Then, a visual interpretation of the model is provided using 
pitch map representations of the resulting probability estimates. Finally, an example 
application is provided where the shooting efficiency of a selection of professional 
football players is measured using their expected goal distribution. 

2 Methodology 

2.1 Goal expectancy model 

The principle behind goal expectancy models was introduced to the field of football 
analysis through the study of goal conversion rates in different regions of the pitch 
[2,3]. This approach divides the field into a number of areas and calculates the goal 
expectancy for each of them as the average success rate of observed shots originating 
from it. A more uniform model can be obtained using the shot data to fit a probability 
estimator, providing a continuous output with respect to the location of the strike [4]. 
 Following this idea, we model the probability of a shot resulting in a goal given 
some contextual information as follows: 

���|�ℎ��	 = ���|�	 = ����	� = �����	
1 + �����	 

The input map ���	 is given by a multilayer perceptron (MLP) with sigmoid activation 
functions, 

���	 = ������� + ��	 + �� 

where � is the input vector, �� is the hidden layer weight matrix, �� is the hidden 
layer bias weight vector, �� is the output layer weight vector and �� is the output 
layer bias weight. The input � is a vector of contextual variables used to characterise 
shots, and contains six elements: two continuous variables that represent the pitch 
coordinates where the shot is taken from, and four binary variables that code the type 
of shot (open play footed shot, header, free kick shot and penalty shot).  

2.2 Distribution of the number of goals 

To model the expected number of goals scored from a given amount of shots, we 
consider all shots as a sequence of independent Bernoulli trials with success probability 
���|��	, where �� represents the contextual information of the i-th shot. Since these 
probabilities will, in general, be different from one shot to another, the trials are non-
identically distributed and the number of successes follows a Poisson binomial 
distribution. 
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 Existing work used Poisson [5,6] and negative binomial [7] distributions to model 
the number of goals scored by teams assuming independent distribution means 
calculated from each team’s previous performances. We could not find any precedent 
in the scientific literature, however, for the use of individual shot expectancy estimates 
to model the distribution of goals. Only in the non-academic domain we found this 
approach: in [4,8] the authors use a Monte Carlo simulation to estimate the values of 
the compound probability mass function. 
 We propose a more accurate and computationally efficient calculation using 
polynomial multiplication to generate all possible goal/miss combinations, weighted by 
their corresponding probability. If we use �� to denote the scoring probability of shot i, 
we can express the probability of the success and failure of a shot as the coefficients of 
a first order polynomial, �1 − ��	 + ���. To obtain the probability of a number of goals 
in a sequence of independent shots, we multiply all the corresponding polynomials: 

���� = �	
�

 !"
� =#�1 − ��	 + ����

�

�!$
 

where X represents the number of goals scored in n attempts. Calculating the complete 
pmf requires n multiplications by a degree 1 polynomial, which takes %�&'	 
computation time using standard algorithms. 

3 Results 

The dataset used in this study contains all the 10318 shots taken during the 2013/14 
English Premier League, extracted from Prozone Matchviewer event data [9]. The shots 
are divided into 8087 open play footed shots, 1678 headers, 466 free kicks and 87 
penalty shots. The training stage of the probability estimator was carried out using half 
of the dataset for training and the other half for validation, with samples selected 
randomly from each of the four subgroups to ensure a balanced representation of all 
shot types. The MLP used had 6 hidden nodes, and the value of its weights was 
calculated using the backpropagation of the log-likelihood errors of the outputs. 

3.1 Visual interpretation of the model 

Given the input space of the study, an intuitive way to represent the resulting model is 
to generate a heatmap of the estimated shot probabilities for a grid of plausible shot 
locations. Figure 1 shows the result, highlighting the smoothing effect of the probability 
function for the first three shot types (penalties have been omitted here, as they are 
restricted to a unique pitch location). 
 Unsurprisingly, the plots capture the decreasing magnitude of the conversion 
expectancy of free kicks, open play shots and headers, for a given position. An 
interesting non-linear characteristic of the model is its asymmetry with respect to the 
horizontal axis (the axis perpendicular to the goal line). This indicates a slight increase 
in the success rate of shots coming from the right (from the goalkeeper’s point of view), 
possibly due to a higher prevalence of right footed players, for whom those areas 
provide a more natural shooting position.  
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Fig. 1: Observed (left) and estimated (right) shot conversion rates for open-play footed shots 
(top), headers (middle) and free kicks (bottom). Dotted contour lines connect areas of the 

pitch with a goal expectancy equal to the corresponding label.  
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3.2 Measuring scoring efficiency 

Working with the expected value of shots adds valuable information to the analysis of 
their observed outcomes. For instance, we can assess the scoring performance of 
players with respect to the aggregated expected value of the chances they had [8]. 
Figure 2 shows the probability distribution of the number of goals expected to be scored 
by Sergio Agüero given the shoots that he took during the 2013/14 season. 

 
Fig. 2: Probability mass function (top) and cumulative distribution (bottom) of the number 

of goals expected from Agüero’s 2013/14 shots, calculated using the Poisson binomial 
distribution discussed in Section 2.2. The vertical lines indicate the distribution mean, 13.3, 

and ±1 standard deviations from it (σ = 3.1). 

It is therefore possible to express the actual number of goals scored by Agüero as a 
deviation from the expected value, in this case of +1.2 standard deviations. Presented 
with the same chances, an average player in that competition would be expected to 
match or outperform Agüero 14.8% of the time. 
 The results in Table 1 compare the top 10 scorers of the competition in terms of 
observed and expected shooting efficiency. The first three players displayed a proficient 
scoring skill, with their p-values indicating that their chance conversion accuracy was 
significantly higher than the average estimates. It is interesting to see how Yaya Touré’s 
67 shots gave rise to 12.6 expected goals, while Sturridge’s 10.6 came from 93 attempts. 
This is due, at least partly, to Touré having taken (and converted) 6 penalty shots, which 
exemplifies the importance of looking beyond simple counts of shots and goals.  

4 Conclusions 

Modelling the expected goal value of shots gives an additional level of detail to the 
analysis of offensive and defensive performance in football. This paper proposes a goal 
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expectancy model based on a neural network estimator followed by an efficient 
calculation of the expected goal distribution given a sample of shots and their 
characteristics. The model provides insightful outcomes using very simple contextual 
information. Further work could easily improve the conversion estimates by using more 
detailed information such as shot power and placement, and location of the players 
between the shooter and the goal. 

Rank Player 
Goals 
scored 

Shots 
taken 

Expected 
goals 

Standard 
deviation 

��� ≥ )*	 
1 Luis Suárez 31 184 16.9 3.7 ≈ 0 
2 Daniel Sturridge 22* 93 10.6 2.8 ≈ 0 
3 Yaya Touré 20 67 12.6 2.5 0.005 

4 
Sergio Agüero 17 85 13.3 3.1 0.148 
Wayne Rooney 17 101 13.5 3.0 0.159 
Wilfried Bony 17* 106 15.3 3.1 0.346 

7 
Edin Džeko 16 103 13.6 3.3 0.269 

Olivier Giroud 16 113 16.7 3.5 0.629 

9 
Romelu Lukaku 15 102 11.2 3.0 0.132 
Jay Rodríguez 15 103 10.6 3.0 0.099 

Table 1: 2013/14 Premier League top scorer table, with added goal expectancy information. The 
competition’s goal panel deducted one goal from these figures, classing them as own goals. Given 
the borderline nature of these two cases, we decided to include them in the analysis as goals. 
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