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Abstract. The paper proposes a minimalistic network to learn a set of movement
primitives and their sequencing in one single feedforward network. Utilizing an ex-
treme learning machine with output feedback and a simple inhibition mechanism,
this approach can sequence movement primitives efficiently with very moderate
network size. It can interpolate movement primitives to create new motions. This
work thus demonstrates that an unspecific single hidden layer, that is a flat represen-
tation is sufficient to efficiently compose complex sequences, a task which usually
requires hierarchy, multiple timescales and multi-level control mechanisms.

1 Introduction

Movement primitives (MPs) in form of dynamical attractor systems are a common
paradigm to encode motion skills in robotics, whereas recent research has turned to
investigate libraries of MPs. In this context, it is discussed, how to sequence move-
ment primitives (MPs) to compose complex trajectories, usually independently from
the question on how to represent the MPs themselves. Any such approach needs a min-
imum control logic for sequencing MPs (i) to index the MPs in a larger architecture
and (ii) to parametrize the execution by the starting point and the goal. It could e.g. be
realized either with brute force by memorizing respective data or by learning a respec-
tive sequence with any method for sequence learning (see [1]). For instance, Kulic et
al. store the sequential activation of specific MPs in [2], while Rhodes et al. [3] orga-
nize short sequences as task specific chunks as cognitively adequate units. A respective
neural architecture was proposed in [4] in form of continuous-time recurrent neural
networks (CTRNNs) to model context-sensitive selection of MPs dependent on sensory
data. These approaches assume that the MPs are given and are neurally sequenced. In
[5], the stochastic continuous-time recurrent neural network (S-CTRNN) is introduced
for learning trajectories by extracting the stochastic structures hidden in demonstrated
training data. This more holistic approach allows for learning and smooth blending of
multiple time series in one single network, but the parameterization of the learned time
series is encoded in context parameters, which are not human readable.

In this paper, an ELM (extreme learning machine) neural network with output feed-
back represents both the MPs and the temporal sequence of MPs in a single flat rep-
resentation, where the MPs themselves are represented through the parameters of a
dynamic movement primitive (DMP) [6, 7]. Additionally, this shared representation is
exploited to interpolate learned MPs.
∗This research has received funding from them EC’s FP7/2007-2013 – Cognitive Systems, Interaction,
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Fig. 1: Left: A flat representation of a sequence of starting points ul and indices φ

together with the MP itself. Right: LASA data set of handwriting motions for training.

2 A flat neural learning architecture for movement generation

Representation of movement primitives: We use a variation of the original DMP
paradigm [6] as proposed in [7], which is invariant to the relative position of the move-
ments’s start and goal position. It comprises a second order spring-damper dynamics
τüt = K(g− ut)−Du̇t −Ks(g− u0) +Kf(s), where K,D are stiffness and damping
constants with D = 2

√
K to generate a critical damped system [7]. It is coupled with

a canonical system: ṡt = − 1
Mmp

, where the specified number of time steps Mmp deter-
mines the motion generation time. The spring-damper part attracts the trajectory to
the goal g, while the perturbation term(“force”, f(s)) is learned from demonstration to
model the motion’s shape. Global asymptotic stability is ensured if the perturbation f
becomes zero at the end of the movement, which results in a linear convergence to the
goal point. The training data is given by recording ut , u̇t , üt from example motion

f(s) =−(g−ut)+
D
K

u̇t + s(g−u0)+
τ

K
üt . (1)

In previous work, the function f has been approximated as a weighted sum of Gaussian
basis functions. We here propose to use an ELM to learn f(s). Without loss of general-
ity, the learning of MPs parameters is performed in a normalized space, where the goal
point is always the origin. This is beneficial as only the initial start point relative to the
goal point ul of the demonstrations is required as to be stored for each MP.
Extreme learning machine with output feedback: The proposed architecture is illus-
trated in Fig. 1. The DMP force term f(s) (how), the starting points ul (from where)
and indices φ (which MP) are learned by the network, the latter two are fed back to
the network to close the loop and realizes the recurrent sequencer. The following ELM
network dynamics arise:

h(k) = σ(W inp
1 s(k)+W inp

2 ul +Winp
3 φ +b), (2)

f̂(k) =W out
1 H(k), (3)

where h∈RR gives the hidden state and φ ∈RI , ul ∈Rd denote the input of the network.
These inputs are respectively connected to the hidden layer through the input matrices
Winp

3 ∈ RR×I and Winp
2 ∈ RR×d , where I is the expected number of MPs stored in this
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network and d is the dimension of the normalized MP space. The bias of the hidden
layer neurons is denoted by b and all input weight matrices remain fixed after random
initialization. The activation function σ(x)= 1/(1+exp(−x)) is applied to each neuron
in the hidden layer, which is connected to the output by Wout

1 ∈ Rd×R and gives the
approximation of the perturbation of the transformation system given in Eq. (1). At
the start of the movement generation the input is s = 1 and decreases according to
ṡt =− 1

Mmp
to s = 0, which corresponds to the end of the motion.

Learning an activation sequence: The task of the sequencer (Fig. 1) is to activate a
number of MPs in a defined way. First, a MP needs to be found in the library, which
requires an index that uniquely identifies the chosen MP. Note that the index does not
need any semantics and in the following a one-of-K-coding vector φ is used. Second,
the initial conditions of the MP need to set the start point ul , while the goal was nor-
malized at the origin and is implicitly given.

The representation of a complex movement as a sequence of MPs thus can be mod-
eled by the ELM with output feedback through the sequencer part in Fig. 1 with just two
simple additional conditions that could easily be realized neurally through inhibitors.
The initial condition is set as identification and start point of the first MP. Then, during
the movement generation i.e. s> 0 the input (Φ(k),ul(k)) stays fixed, which effectively
cuts off the recurrence in the sequencer part, i.e. Eq. (5) and Eq. (6) below are not ap-
plied. This parametrizes the particular MP, due to the unique impact of the sequencer
input on the global representation, that is f(s) is generated by the network and the DMP
spring-damper equation is integrated over time.

When the particular MP is converged and the input s is zero, then the following
update of network dynamics are performed:

h(k+1) = σ(Winp
2 ul(k)+Winp

3 φ(k)+b), (4)

φ(k+1) = W f db
φ

h(k), (5)

ul(k+1) = W f db
u h(k), (6)

The hidden layer is fed back to the inputs by W f db
φ
∈ RI×R and W f db

u ∈ Rd×R. This
effectively recalls the next MP index and initial conditions in the learned sequence.

3 Learning methodology

The training data is specified by at least one normalized demonstration (w.r.t. the goal
point) to record a set of ut , u̇t , üt and the respective index φ and start point uI . The input
s is given by a decreasing linear function from s = 1 to s = 0 in Mmp steps, where Mmp
is the number of samples in the demonstrated trajectory. The input (φ ,ul) stays fixed
during the learning of the DMP perturbation terms. The hidden layer states are obtained
from applying s( j) as input and harvesting the hidden states in the matrix H(S( j)) =
(h(s(1)), . . . ,h(s(Mmp))), where j ∈ [1 . . .Mmp] is the current step. The corresponding
targets are given by T( j) = ( f (s(1)), . . . , f (s(Mmp))), where f is given by Eq. (1).
The sequence of of MPs is learned by closing the loop (e.i. Eq. (5) and Eq. (6) are
applied). The input at iteration k in the sequence is given by x(k) = (ul(k),φ(k)) and
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the corresponding target t(k) = (ul(k+1),φ(k+1)). If Mtr is the length of the training
sequence, then a sequence is given by S = (X,T) = (x(n), t(n)) : n = 1 . . .Mtr.
Efficient online learning: We use a version of recursive least squares (OS-ELM [8])
to incrementally learn or refine MPs if new training data is available. To learn the first
MP with k = 0 (the first demonstration needs to include at least as many s−steps as
the number of hidden neurons), we initialize Wout

0 = P0HT
0 T0,P0 = (HT

0 H0 + ε1)−1,
where ε is the regression parameter and 1 is the identity matrix. Further primitives are
added incrementally:

Pk+1 = PkHT
k+1(1+Hk+1PkHT

k+1)
−1Hk+1Pk, (7)

Wout
k+1 = Wout

k +Pk+1HT
k+1(Tk+1−Hk+1Tk). (8)

4 Composition of complex trajectories

Recall activation sequence: We start by evaluating the performance of the sequencer
part, which means to sequence the φs in the right order with the correct starting points
ul of the motion relative to the end point. An update of the sequencing part (see Fig. 1)
according to Eq. (4) generates a new starting point to parametrize a new MP and an
index to select the respective MP, if the input is s = 0. An example of a reproduced
learned initial point sequence is given in Fig. 2. Here we used εSeq = 1 for adapting
the feedback weights W f db

∗ . Note that no preprocessing of the starting points (see
Fig. 2(circles)) is necessary. After learning the network generates a mean starting point
(see Fig. 2(cross)) corresponding to the primitive indexed by φs (Fig. 2(numbers)).
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Fig. 2: Reproduction of the learned sequence of
starting points (in mm). Circles mark the starting
points of the training data and the cross mark the re-
produced starting point of the MP indexed by 1−7.

Network capacity: For further
evaluation, we trained a single
network (Fig. 1) to represent all
M = 20 motions in the LASA
dataset (Fig. 1) together with
a respective sequencing, where
each of the motions is specified
by N = 3 demonstrations. After
learning, the reproduction per-
formance of the motion genera-
tion with respect to the size of
the hidden layer is measured, which is one critical parameter of the overall approach.
The order in which the motion patterns are presented is randomized. The reproduction
performance of the monolithic approach over k = 10 network initialization for the hid-
den layer size of R ∈ {40, . . . ,200} is evaluated. The input matrices and biases bi are
initialized randomly from uniform distributions in [−10,10] and [−1,1] respectively.
The DMP transformation system is initialized with K = 200. The reproduction error is
measured by the point wise root mean square error (RMSE) over all motions learned

by the network: RMSE = 1
N ∑N

√
1

Ntr
∑

Ntr
i ||un(i)− ûn(i)||2, where u is the position at

time-step i and û is the corresponding reproduction. For this experiment the φ index of
the desired primitive is set manually in the input layer. From Fig. 3 we obtain that the
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Fig. 3: Left: Sequencing seven MPs (Fig. 4) repeated twice. Three runs started from
different initial points ( zoomed). Right: Error for learning of M = 20 motion patterns
with different hidden layer sizes.

performance is robust with respect to the number of neurons in the hidden layer for the
very modest number of at least 140 neurons.
Combined sequencing and motion generation: In Fig. 3 (left), a complex trajectory
is shown which is composed of seven MPs trained in one network together with the
proper activation sequence of these MPs. The network can be exploited with a minimal
overhead of additional “control”. While executing the MP, the feedback from the net-
work to the sequencing part is inhibited i.e. Eq. (5) and Eq. (6) are not applied, until
the MP is finished. After the motion generation (i.e. s = 0) the Eq. (5) and Eq. (6) are
applied and a new φ and ul can be recalled from the network.
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Fig. 4: Two motions in-
terpolated through mixture
coefficients at indexing in-
put (red/dark) vs. MP with
external computed sum of
forces (green/light).

Now the next motion primitive can start, as selected
through the newly updated index. The complex move-
ment is repeated three times with the three different ini-
tial positions (see Fig. 3, zoomed area upper right cor-
ner). The overall sequence structure repeats itself, be-
cause a cyclic loop was trained for the sequencer. Note
that after the first primitive (’sine wave’), the next prim-
itive (’Sshape’) all three repetitions of the complex mo-
tions are aligned (see Fig. 3, zoomed area bottom left
corner), which is due to the generalization capability of
the DMP to converge back to its initial form.
Mixing of movement primitives: Due to the one-of-
K coding scheme, only one neuron in the identifica-
tion vector φ is active to represent a single learned MP.
A natural generalization, which can be done without
further external control logic, is to overlay primitives
through co-activation. Then the expectation is that the
global representation creates a mixture of the originally
learned motions. Fig. 4 shows how two motions are interpolated by applying con-
vex combinations of indexing input (φ1 = (1,0) and φ2 = (0,1)) in seven intermediate
steps. The network generated motion is blended in a respective additive mixture of two

485

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



separately trained DMP, which shows that the flat network representation produces by
means of internal interpolation highly plausible motion mixtures that resemble exter-
nally combined ones. (Further learning parameters: εMP = 0.5 i.e. Wout

1 , size of the
hidden layer R = 100. All other variables are initialized as described in the previous
section.) Both MPs φ1 and φ2 reproduced accurately the training motions and a smooth
transition from φ1 or φ2 occurs by simply by changing the input linearily from φ1 to φ2.

5 Very short discussion on the architecture perspective

This paper introduces a flat single-layer neural architecture to learn parametrizations of
dynamic movement primitives together with their sequencing in a flexible and efficient
way, largely avoiding additional control overhead. From our current experience, there
are no obvious scaling limits. But future work needs to further evaluate the capacity
of the network to learn different motions, the generalization abilities e.g. to disturbed
and multiple sequences, or the interpolation behavior. Still, besides implementing an
elegant neural solution to a persistent research question, the presented work strongly
questions a number of common notions in behavioral architectures. Seemingly, the
motion sequencing task requires explicit hierarchy, multiple timescales and multi-level
control mechanisms as present in most related work. But in our model, this is not the
case. Time-scales are implicit, control is minimalistic, and a hierarchy is arguably not
present: does the MP-representation trigger “top-down” the next initial conditions by
releasing the inhibition of the sequencer loop, or does the sequencer “top-down” trigger
the next MP ? Maybe more of the “architecture” is in the eye of the beholder than we
usually assume. Thus we hope to explore such architectures further in future work,
because they are interesting both from a practical and cognitive point of view.
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