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Abstract. In the last decade, training recurrent neural networks (RNN)
using techniques from the area of reservoir computing (RC) became more
attractive for learning sequential data due to the ease of network train-
ing. Although successfully applied in the language and speech domains,
only little is known about using RC techniques for dynamic gesture recog-
nition. We therefore conducted experiments on command gestures using
Echo State Networks (ESN) to investigate both the effect of different ges-
ture sequence representations and different parameter configurations. For
recognition we employed the ensemble technique, i.e. using ESN as weak
classifiers. Our results show that using ESN is a promising approach for
dynamic gesture recognition and we give indications for future experi-
ments.

1 Introduction

In our everyday life, we rely heavily on different gestures to underpin the mean-
ing of what we are saying. Pointing gestures used in accompanying commands
like ”Give me that object” or even replacing that sentence are referred to as
deictic gestures, while gestures produced along with story-telling e.g. describing
the shape of an object, are termed iconic gestures. Both types have dynamic
character to convey the gesture meaning, as opposed to postures with specific
finger configurations. Often, modeling gestures is a trade-off between capturing
the temporal dynamics using probabilistic approaches or representing them in
a more bio-inspired fashion, which make use of the hierarchical structure found
in the visual cortex. A bridge to both approaches is provided by Recurrent
Neural Networks (RNN). Standard RNN as the simple Elman network or more
complex networks like Multiple Timescale RNN use gradient-based training ap-
plying the Backpropagation Through Time algorithm (BPTT). That way, the
network establishes a memory, hence capturing long-term-dependencies as is
necessary for sequential data. However, this method suffers from several draw-
backs, namely slow convergence, poor local minima and stability problems in
terms of bifurcations [1]. An optimized procedure for training is provided by
Backpropagation-Decorrelation [2]. In this work we focus on dynamic gestures
and aim to investigate Reservoir Computing (RC) methods for gesture recog-
nition. To achieve this, we concentrate on recent models in the area of RC, in
particular the Echo State Networks [3] (ESN). From the other direction, there is
research about generating movements using ESNs. These approaches incorpo-
rate the feedback matrix for learning e.g. arm movements [4]. The focus is not
on classification and hence even the role of features for input is not significant.
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Combining the fact that gestures do play an important role for communication
with the benefits ESNs provide in terms of their implementation and learning
(classification and generation), we set up experiments comprising a simple and a
complex feature set to investigate the gesture representation on the ESN learn-
ing. Further, we explore different parameters of the ESN to report under which
configurations the task of gesture recognition can be applied.

2 ESN computations

A dynamical system is described in terms of its state evolution or state trajectory,
which is coded in the reservoir neurons. Let x be the state space and u the input
space. Evolution of x in a leaky-integrator ESN is given as:

ẋ = c−1
(
− αx+ f

(
Winu+Wresx+Wbacky

))
, (1)

where f is a network activation function, c is a time constant and α ∈
(0, 1] is the leakage rate, quantifying the amount of memory in the network.
The matrices connect the different layers of the network, hence Win is of size
input × reservoir, Wres is the square matrix assigning connectivity between
reservoir neurons including self-reference, and Wback is accordingly determined
by the size of the output layer and reservoir size, feeding back the information
from the output. The input to the reservoir is represented by u, while y denotes
the output. Discretization of equation 1 yields the following:

x(n+ 1) = rx(n) + f(Winu(n+ 1) +Wresx(n) +Wbacky(n) + ν(n+ 1), (2)

where r = 1−α is referred to as the retainment factor and ν is a noise term added
for system stability [5]. The ease of training is due to the computation of a linear
regression on the weight matrix Wout, which connects the reservoir with the
output. Computation of Wout is often performed with Thikonov regularization
to bound growth of output weights: 1

Wout = Y XT (XXT + κI)−1 (3)

with κ being the regularization coefficient and I being the identity matrix. Omit-
ting κ is known as the Wiener-Hopf solution. Usage of the pseudo-inverse is
mathematically equivalent, thus the equation can be rewritten and easily imple-
mented as:

Wout = (Y X†)T (4)

3 Classification Experiments

As our purpose is to establish a visual communicative Human-Robot Interaction
(HRI) scenario using gestures, we chose deictic gestures. For initial experiments

1We use bold- and capital letters to underline the matrix notation for linear regression
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Fig. 1: Visualization of hand orientation computation for subsequent frames of a stop
gesture. After hand extraction, an ellipse is fitted to the global shape to compute the
orientation.

we defined five gestures: ’Stop’, ’Point left’, ’Point right’, ’Turn around’, and
’Drawing a circle’. Gesture sequences were recorded either with the NAO camera
or a webcam with the subject standing frontal to the camera. Every gesture is
performed with only one hand. The distance to the sensor is constrained so as
to resemble a natural conversation.

For hand detection we converted the images into YCbCr colour space to
account for luminance changes. Skin-tone regions were filtered with a threshold
method following [6]. Morphological operations like hole-filling were applied
to achieve consistent large pixel blocks in the image followed by a connected-
component analysis. From the resultant remaining blobs, a threshold was applied
to get the hands. As we consider dynamic gestures, we rather focus on simple
features, i.e. centroid computation and the according hand orientation, as we
do not want to recognize specific hand postures. In addition, the performed
gestures hardly contain special finger movements.

We also set up experiments using features extracted from a Multichannel
Convolutional Neural Networks (MCCNN) [7]. Computations in standard con-
volutional neural networks (CNN) resemble the hierarchical processing stages in
the visual cortex, where neurons in lower brain areas code for rather simple fea-
tures like edges, but get tuned to more specific properties like shape and motion
in the upper brain areas. The underlying major operations in a CNN comprise
convolution of images and subsequent max-pooling. Here, we use an extended
version using a cubic kernel for spatial feature detection applied to three input
channels that are the grayscale images and Sobel-filtered images in x- and y-
direction (see Figure 2). As a result we get a 70-dimensional feature vector for
network input.

The data was normalized into the range [−1; 1] and fed into the network
with tanh activation and leaky neurons. The input and reservoir matrices are
randomly initialized in the range [−1; 1]. As we do not use the ESN for signal
generation, Wback and ν were set to 0. To ensure nonlinearity in the reservoir,
the input scale factor was set to 1.5 as in comparable work with reservoirs. The
spectral radius was set below unity. We also set up different sizes of ensemble
ESNs up to 500, which resulted in 10 ensemble sets. In detail, 500 single ESNs
with the given parameters were initialized and then merged into ensembles up to
one reservoir or, respectively, one big ensemble. The 103 gesture sequences were
split into 2/3 train- and 1/3 test sets, randomly subsampled without replacement
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Fig. 2: The MCCNN architecture used for feature extraction. Each image from
the gesture sequences is passed through three channels, each one containing two
convolution layers. A max-pooling operator is applied to compress the data.
Finally, a 1D vector representing the image is obtained.

from the whole data to ensure data diversity in both sets. We used and extended
the classification idea presented first for a speaker identification task [8]. We
decided using the following scheme: Let sin denote the i-th state sequence from
a training sample set with length ltrain. So, sin is a vector of the design matrix
hosting both the excitation ui(n) and neuron state activations xi(n). Further,
let hic be the hypothesis that the i-th sample belongs to the c-th class, where
1 ≤ c ≤ 5. For the training we therefore determined ltrain × c binary matrices
coding with value 1 the target class and set to value 0 else. Following [8], we
chose a small value `, which si(n) will then be equidistantly subdivided with.
From the resulting subsequences only the states lying in the intervall δ ∗ litrain/`,
with 1 ≤ δ ≤ `, ` is an integer determining the partition of the states, and litrain
is the length of the i-th sample, are further used as they carry state information
picked up at different points while network execution. This results in a vector set
for training the according regression weights. In addition, Jaeger and collegues
[3] also proposed a voting scheme, known for instance from neural ensembles
performing classification using weak classifiers. The idea is to use small leaky
ESNs for performance but to retain their output merged into a vote for the
best-fitting hypothesis given the test input. We investigate the effect of the
ESN-ensembles for both feature sets.

4 Results

We conducted experiments on both feature sets with different values of α =
{0.1, 0.2, 0.3}, ` = {3, ..., 6} and number of reservoir neurons per ensemble
{3, .., 10}. For each parameter configuration we ran 30 trials. When only in-
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creasing the number of reservoir neurons (α = 0.2, ` = 3), we could detect
overfitting in both feature sets. Globally, the average number of misclassifica-
tions is rather low for the complex feature set, i.e. across the trials the training
error is (near to) 0, also across different ensemble sets. The test results showed
in the worst case for overfitting on average 1.5 misclassifications. In comparison,
the simple feature set showed highly varying misclassifications across the exper-
iments, specifically the ’circle’ and ’turn around’ gestures and also ’turn around’
and the pointing gestures are incorrectly recognized. The effect changes slightly
when also increasing `, but having both high values of reservoir neurons and `
will result in divergence of training- and test error. Using the voting scheme for
the simple feature set we could detect no benefit. The best results here in terms
of misclassification could be achieved combining the ESN into one reservoir. In
contrast, using ensemble ESNs for the complex feature set could show that on
both extremes (only single voters vs. one reservoir) the mean classification is
worse than using reservoir ensembles. Variation of α shows no significant effect
on our data. We assume that with a bigger database comprising more motion
gestures α will have an influence, i.e. higher values will then lead to a lower
retainment in the network, thus the network can respond to new stimuli faster.

(a) Evaluation of the experiments using different ensemble sizes (diamonds, dots) for
the simple feature set. Upper graph: α = 0.2, ` = 3 and number of reservoir neurons=4.
Right:α = 0.2, ` = 3 and number of reservoir neurons=9. The dashed line shows the
trend for misclassification. Here, the simple feature set works best when using one
ensemble or, respectively, a single reservoir.

(b) Evaluation of the experiments using different ensemble sizes (dots) for the com-
plex feature set with the same parameter configuration as described above. The trend
highlights the decrease of misclassifications when using ESNs in ensembles. The mis-
classification rate increases when considering individual ESNs or a single reservoir.
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5 Discussion and Conclusion

We have shown that usage of ESN is a viable method for gesture recognition.
All gestures are of different lengths, which is useful as to cope with intra- and
inter-subject variances in gesture performance when scaling up the ESN to our
extended recorded gesture vocabulary database comprising 14 commanding ges-
tures, performed with one and with both hands. With our approach, commu-
nication with gestures can be performed quite intuitive, as we do not rely on
additional devices like markers or gloves. We also showed the effect of ges-
ture recognition using two feature sets of varying complexity applied to ESN-
ensembles. For the simple feature set, our results highlight that using single
reservoirs is superior to the ensemble concept. In contrast, the ensembles could
show better recognition results than achieved with individual voters or a big en-
semble. Based on the work, we conclude to extend the established classification
with the generation capabilities mentioned above, as we want to establish also
an active role for robots in HRI.
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