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Abstract. In this paper, we show how the Ordered Decomposition
DAGs kernel framework, a framework that allows the definition of graph
kernels from tree kernels, allows to easily define new state-of-the-art graph
kernels. Here we consider a quite fast graph kernel based on the Subtree
kernel (ST), and we improve it by increasing its expressivity by adding new
features involving partial tree features. While the worst-case complexity
of the new obtained graph kernel does not increase, its effectiveness is
improved, as shown on several chemical datasets, reaching state-of-the-art
performances.

1 Introduction

The study of machine learning for structured domains has received increasing at-
tention in the last years due to the high availability of data in stuctured form [1].
Among the different types of structured data, the most studied are undoubtedly
sequences, trees and graphs [2]. Among the different techniques for dealing with
structured data, kernel methods have state of the art results on many bench-
mark problems. A kernel method represents the data via a similarity function
K() which corresponds to the dot product of the mapping φ() in a feature space
of the structures xi and xj : K(xi, xj) = 〈φ(xi), φ(xj)〉. In particular, the work
in [3] presents a framework for graph kernels that can be instantiated with several
kernels for Directed Acyclic Graphs (DAGs). Such kernels can be conveniently
defined extending kernels for trees, thus reconducting the problem of the defi-
nition of a graph kernel to the definition of a tree kernel. The original paper
proposes one instantiation of the framework with an extension to DAGs of the
efficient Subtree (ST) kernel for trees. In this paper, we propose a new instance
of the Ordered Decompositional DAGs graph kernel framework that adopts a
new kernel for trees, referred to as ST+, which enlarges the feature space of
the ST kernel. As a side contribution, we propose a new approach for feature
weighting that considers the frequency of all the generated features, in opposi-
tion to the classical feature weighting approach that considers only the size of
each feature to determine their weight. Finally we show experimental results of
the three new instances of the framework, comparing them to the original one
and other state-of-the-art kernels on real-world datasets.

∗This work was supported by the University of Padova under the strategic project BIOIN-
FOGEN.
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2 Ordered Decomposition DAG Kernels for Graphs

This section briefly describes the framework of ODD-Kernels for graphs, pro-
posed in [3]. Let us first introduce some notation. A graph G = (VG, EG, LG) is
a triplet where VG is the set of vertices, EG the set of edges and LG() a function
mapping nodes to labels. A graph is undirected if (vi, vj) ∈ EG ⇔ (vj , vi) ∈ EG,
otherwise it is directed. A path p(vi, vj) of length n in a graph G is a sequence
of nodes v1, . . . , vn, where v1 = vi, vn = vj and (vk, vk+1) ∈ EG for 1 ≤ k < n.
A cycle is a path for which v1 = vn. A graph is acyclic if it has no cycles. A
tree is a directed acyclic graph where each node has at most one incoming edge.
The root of a tree T is represented by r(T ). The children of a node v ∈ VT are
all the nodes v′ s.t. (v, v′) ∈ ET . ρ is the maximum number of children in a

tree. The symbol
v

4 is used to denote the proper subtree of T rooted at v, that

is the tree that comprises v and all its descendants. Moreover, we denote as
v

4|h
the subtree of T resulting from a breadth-first visit starting at v and limited
to h levels of depth. The idea of the ODD kernel framework is to decompose
the input graph into a set of substructures for which the isomorphism can be
computed efficiently, i.e. subtrees.

In order to map the graphs into trees, two intermediate steps are needed:

1. map the graph G into a multiset of DAGs {DDvi
G |vi ∈ VG}, where DDvi

G is
obtained by keeping each edge in the shortest path(s) connecting vi with
any vj ∈ VG. The Decomposition DAGs kernel for graphs can be defined

as DDKKDAG(G1, G2) =
∑

D1∈DDG1

∑
D2∈DDG2

KDAG(D1, D2).

2. Since the vast majority of DAG kernels are extensions of kernels for ordered
trees a strict partial order between DAG nodes in DDvi

G has been defined
yielding Ordered Decomposition DAGs ODDvi

G . The ordering function
considers, in order: i) the vertex label L(v), ii) ρ(v) and iii) the recursive
application of the ordering function to the children of v [3].

3. Finally, any Ordered DAG (ODD) is mapped into a multiset of trees. Let
us define T (vi) as the tree resulting from the visit of ODDvi

G starting from
node vi: the visit returns the nodes reachable from vi in ODDvi

G . Note
that if a node vj can be reached more than once, more occurrences of vj
will appear in T (vi). Notice that the tree visit T (vi) can be stopped when
the tree T (vi) reaches a maximum depth h. Such tree is referred to as
Th(vi). In [3] the Ordered Decomposition DAGs kernel is defined as:

ODDK(G1, G2) =
∑

OD1∈ODDG1
OD2∈ODDG2

h∑
j=1

∑
v1∈VOD1
v2∈VOD2

C(r(Tj(v1)), r(Tj(v2))) (1)

where C() is a function defining a tree kernel. Among the kernels for trees
defined in literature, the one employed in the paper is the Subtree Kernel [4],
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which counts the number of shared proper subtrees between the two input trees
and have complexity of O(|VT | log |VT |). We recall that the tree visits can be
limited to a depth h and that, consequently, the size of the tree visits is constant
if we assume ρ constant. Therefore the resulting ODD kernel with ST has a
complexity of O(|VG| log |VG|) [3]. Another kernel worth citing is the Partial
Tree kernel [5], that considers all the possible subtrees of the given trees. Its
complexity is O(ρ3|VT |2) while the complexity of the associated graph kernel is
O(|VT |2 log |VT |), if we consider ρ constant.

3 A novel tree kernel

The kernel we introduce in this section enlarges the feature space of the ST
kernel, with a modest increase in computational burden, and is referred to as
ST+. In Alg. 1 we define a procedure to compute the explicit feature space
representation φ() of ST+, thus making it trivial to show that the kernel is
positive semidefinite. The set of features related to the ST+ kernel is a superset
of the features of ST and a subset of the features of PT. Line 6 of Alg. 1 depicts
a generic feature introduced by ST+. Given the node v and the index j, the
feature is composed by v, the proper subtree rooted at the j-th child and the
subtrees resulting from a limited visit of l levels for the other children. Notice
that it depends on v ∈ T , the index of a child j and a limit l on the depth of
the visits. The function π(f) returns the index of the feature f in φ(). Fig. 1
depicts a partial feature space representation of a tree according to ST+. While
for the ST kernel there is one feature for each v ∈ T , ST+ associates at most
(ρ(v) · h) + 1 features for any v ∈ T . For each node v ∈ T , for example the node
highlighted in Fig. 1-a, the algorithm inserts the following features: 1) the proper
subtree rooted at v, which in our example is the one in Fig. 1-b; 2) given chj [v],
i.e. the j-th child of v, the subtree composed by: i) v; ii) the proper subtree
rooted at the j-th child of v; iii) the subtrees resulting from a visit limited to
1 ≤ l ≤ h levels starting from the other children of v is added as feature. As
l ranges from 0 to h, the features/subtrees from Fig. 1-c to Fig. 1-e are added.
Assuming ρ constant, any tree visit with limited depth h yields a tree with a
constant number of nodes H. Then the complexity of Alg. 1 is O(Hh2ρ2 log ρ).
Alg. 1 can easily be extended for the application to ordered DAGs (substituting
v

4 with T (v)). The complexity of the ODDK kernel instantiated with ST+ as

base kernel is |VG| log |VG|. The kernel can be written as:

ODDKST+
(G1, G2) =

∑
OD1∈ODDG1
OD2∈ODDG2

h∑
j=1

〈φST+
(OD1, j), φST+

(OD2, j)〉.

Let |f | be the number of nodes in the subtree encoded by a feature f . It
is possible to see from lines 3 and 8 of Alg.1 that the weight of each feature is

λ
|f|
2 , meaning that the weight of matching features (calculated via dot product)

is λ|f |. This is the usual downweight scheme used in tree kernels for avoiding
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Algorithm 1 Sketch of an algorithm to compute the features of the ST+ kernel.
1: Input: a tree T , h
2: for each v ∈ T do

3: φ
π(
v

4)
= φ

π(
v

4)
+ λ

|
v

4|
2 // add the proper subtree rooted at v as a feature.

4: // If the feature is first encountered, it is assumed φ
π(
v

4)
= 0

5: for 0 ≤ l < min(h, depth( v4)) do

6: for 1 ≤ j ≤ ρ(v) do

7:

v

ch1[v]

4|l
. . . chj−1[v]

4|l
chj [v]

4
chj+1[v]

4|l
. . .

chρ(v)[v]

4|l

t =

8: φπ(t) = φπ(t) + λ
|t|
2 // add the subtree t as a feature.

9: end for
10: end for
11: end for
12: Output: φ, the set of features of T

to overweight the contribution of a feature. Following the same principle we
observe that, by construction, a node of the graph may appear in multiple tree
visits. In order to control the contribution of the features related to such nodes,
we propose to replace the weight λ|f | with tanh(|f | ∗freq(f)∗σ), where freq(f)
is the frequency of the feature in the particular example and σ is a parameter
determining the smoothness of the sigmoid function. The new weighting scheme
is applied to the ST kernel, obtaining a variant of the kernel proposed in [3], and
to the ST+ kernel first proposed in this paper.

4 Experimental results

The experimentation has been performed on five datasets: CAS1, CPDB [6],
AIDS [7], NCI1 [8] and GDD [9]. All datasets involve chemical compounds
and represent binary classification problems. In all data sets nodes are la-
beled and there are no self-loops. We compare the predictive abilities of the
ODDKST+

kernel and the two proposed variants ODDKTANH

STh
and ODDKTANH

ST+

to the original ODDKSTh kernel [3], the Fast Subtree Kernel (FS) [10] and the
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) [11]. The exper-
iments are performed using the nested k-fold cross validation: for each of the
K folds another inner K-fold cross validation, in which we select the best pa-
rameters for that particular fold, is performed. The K parameter (number of
folds) has been fixed to 10; all the experiments have been repeated 10 times
using different splits for the cross validation, and the average results (with
standard deviation) are reported. For all the experiments, the values of the
parameters of the ODDKSTh and ODDKST+ kernels have been restricted to:
λ = {0.1, 0.2, . . . , 2.0}, h = {1, 2, . . . , 10}. For the variants using tanh, the σ pa-
rameter is optimized (instead of λ) in the range { 1

0.00001 , 1,
1
3 ,

1
5 ,

1
10 ,

1
15}. For the

Fast Subtree kernel only the parameter h = {1, 2, . . . , 10} is optimized. For the

1http://www.cheminformatics.org/datasets/bursi
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Fig. 1: Feature space representation related to the kernel ST+ for an example
tree: a) the input tree; b) the proper subtree rooted at the node labelled as v;
c)-e) given the child x of v, the features related to visits limited to l levels.

NSPDK, the parameters h = {1, 2, . . . , 8} and d = {1, 2, . . . , 7} are optimized.
Table 1 reports the average accuracy and the ranking obtained by the considered
methods. The proposed kernels, ODDKTANH

STh
, ODDKST+ , ODDKTANH

ST+
together

have best accuracy on three out of five datasets, and the second best accuracy
on the other two. The variant employing the hyperbolic tangent is always useful
for the ST kernel, making it the best performing kernel on GDD, and is able to
boost the accuracy performance of ODDKST+

on AIDS and CPDB. The gen-
erally good results of the ODDK kernels, with respect to FS and NSPDK, may
be attributed to the fact that they have associated a large feature space, which
makes them more adaptable to different tasks.

5 Conclusions

The paper presents a novel instance of the ODDK graph kernel based on a novel
tree kernel, ST+. Moreover we defined a novel feature weighting scheme for the
ODDK kernels. The experimental results show that the proposed kernels have
state of the art performances on five benchmark graph datasets. This constitutes
an example of how the generality of the framework can potentially lead to the
definition of novel graph kernels that can significantly improve the state-of-the-
art. This work suggests that the way to follow to get better graph kernels is to
move from hard to soft substructure matching.
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Kernel CAS CPDB AIDS NCI1 GDD
FS 83.32 (6) 76.36 (4) 82.02 (5) 84.41 (3) 75.46 (2)

±0.37 ±1.48 ±0.4 ±0.49 ±0.98

NSPDK 83.6 (2) 76.99 (1) 82.71 (1) 83.45 (5) 74.09 (6)
±0.34 ±1.15 ±0.66 ±0.43 ±0.91

ODDKSTh
83.34 (5) 76.44 (3) 81.51 (6) 82.10 (6) 75.27 (4)
±0.31 ±0.62 ±0.74 ±0.42 ±0.68

ODDKTANH
STh

83.37 (4) 76.45 (2) 82.54 (2) 84.35 (4) 75.62 (1)
±0.5 ±1.13 ±0.57 ±0.44 ±1.1

ODDKST+
83.90 (1) 76.3 (6) 82.06 (4) 84.97 (1) 75.33 (3)
±0.33 ±0.23 ±0.70 ±0.47 ±0.81

ODDKTANH
ST+

83.39 (3) 76.31 (5) 82.54 (2) 84.69 (2) 74.6 (5)
±0.34 ±1.72 ±0.90 ±0.34 ±0.68

Table 1: Average accuracy results ± standard deviation in nested 10-fold cross
validation for the Fast Subtree, the Neighborhood Subgraph Pairwise Distance,
the ODDKSTh and the ODDKST+

kernels obtained on CAS, CPDB, AIDS,
NCI1 and GDD datasets. The rank of the kernel is reported between brackets.
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