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Abstract.  This paper presents a geometrical approach for obtaining
large margin classifiers. The method aims at exploring the geometrical
properties of the dataset from the structure of a Gabriel graph, which
represents pattern relations according to a given distance metric, such
as the Fuclidean distance. Once the graph is generated, geometric vec-
tors, analogous to SVM'’s support vectors are obtained in order to yield
the final large margin solution from a Gaussian mixture model approach.
Preliminary experiments have shown that the solutions obtained with the
proposed method are close to those obtained with SVMs.

1 Introduction

Little has been done in the literature to explore the concept of margin-based
classifiers [1] from a geometrical perspective. The notion of a separation margin
is in fact quite intuitive, however, the problem has been often formulated from
a numerical perspective. In SVM’s design the contribution of each support
vector to the final classification outcome is given by the magnitude of the yielded
Lagrange Multipliers [2]. The Quadratic Programming formulation of SVMs is
optimal for preestablished values of kernel and regularization parameters so, by
adopting approaches such as cross-validation a high performance solution may
be achieved. Nevertheless, a geometrical formulation may uncover some inner
properties of the dataset and provide insights into the problem that were not
possible to be identified with a numerical approach.

A geometrical formulation of a discriminative margin-based classifier is pre-
sented in this paper. The pairwise distances between input patterns are com-
puted and used to build a graph model of the dataset (Gabriel Graph [3]) which,
when associated with label information, allows the identification of the margin
Geometrical Vectors (GV). This set is similar to the edited set found in [4]. The
computational cost to calculate the distance matrix to build the Gabriel Graph
(G) has the same order of complexity of kernel construction. Only the GV, which
are analogous to SVM’s Support Vectors (SV), are combined as a mixture model
of a Bayesian classifier to compute the final classification. Although there is no
implicit mapping into a feature space like in SVM description, there is in fact
an explicit mapping to the likelihoods space of each class (as can be seen in Fig.
1(b)), where the final classification decision is accomplished.

The structure of the present paper is as follows. The Gabriel Graph is
presented in Section 2. Section 3 presents the geometrical Gaussian classifier
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method. An analogy between the method proposed and SVM classifiers is pre-
sented in Section 3.1. Finally results and conclusions are presented in Sections
4 and 5.

Fig. 1: (a) Gabriel graph obtained from a binary classification problem (Two
moons). (b) Mapping of Two-Moon dataset to the Likelihood space.

2 Gabriel Graph

Likewise SVM the proposed method classifies an input pattern according to a
subset of the training set [5]. The selected points, hereafter called Geometric
Vectors (GV), are chosen from a convex graph called Gabriel graph [3], that will
be described next.

2.1 Definition

Considering the dataset S = {x;,y;}1¥; with x; € R? and y; € {C1,Cs}, the
Gabriel graph G of S is defined as the graph with a set of vertices V = {x;}¥,
and edges £ that meet the following definition:

An edge connecting the vertices x; and x; from V belongs to £
only, and only if

82(x4,%5) < [62(xi,xk) —|—52(xj,xk)] , (1)

Vx, € Vand i # j # k, where §(-,-) is the Euclidean distance
between the vertices.

Fig. 1(a) shows an example of graph resulting from the previous definition.

3 Geometric Gaussian Classifier

Classification is accomplished in two distinct phases. The first one aims at
finding the patterns located in the class separation region, which are called here
Geometrical Vectors (GV). This is carried on by identifying the edges of a Gabriel

238



ESANN 2015 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

Graph that have patterns from different classes in their vertices. As mentioned
earlier, the importance of GV for our method is similar to the support vectors of
SVMs. In the second phase, GV samples are used to compute the parameters of
Gaussian mixture models for each class and then a Bayesian classification rule
is applied. Each one of the two phases will be described in details next.

e Phase 1. Identifying the Geometrical Vectors

1. Gabriel Graph. Obtain the Gabriel Graph G = V), € from the training
set 8 = {x;,y;})¥; as described in Section 2.1.

2. Eliminate overlapping. For each x; € V), analyze the subgraph in-
duced by the vertex x;, i.e, the subgraph formed by the edges that
have x; as one of the ends. If most of the neighbors (adjacent vertices
of x;) belong to the opposite class, then x; is considered as noise and
should be eliminated of V.

3. Geometrical vectors. Select all edges that have vertices belonging
to distinct classes, i.e., select (x;,x;) € &, such that y; # y;. The
Geometrical Vectors GV corresponds to the patterns at the extremes
of these border edges.

e Phase 2. Computing Density Mixture

1. Multivariate Gaussians. For each pair (x;,x;) € GV, such that y; #
y;, obtain Gaussian densities G- (x, y-, X.), with mean vectors p, =
x, and diagonal covariance matrices X, for 7 = 7, j. Each diagonal
element of 3, is computed as 02(l) = 2 - ||x;(I) — mp(l)|| (variance
for the I-th dimension), where mp is the mid-point vector between
the two vertices x; and x;.

2. Density Mixtures per class. Compute a density mixture model for
each class C from the weighted sum of the Gaussian functions whose
centers belonging to the same class, i.e.,

Ny
P(%,0k|Cr) = > w;Gy(x, 1y, By), for k=1,2 (2)
j=1
where 0, = [{u1, 21}, ..., {n,, vk }H is the parameter vector drawn

from the IV, geometrical vectors of class C, w; is the corresponding
weight for the j-th density G,(-), subject to Z;V:’”I w; = 1. Figs. 2(a)
and 2(b) illustrates the mixture models p(x,60:]|C1) and p(x,82|C2)
for the toy-problem Two Moons.

3. Decision Rule. A Bayes decision rule is then formulated from the
class mixture models, described by the parameter vectors 6, and 6,.
This rule is the one that minimizes the global error probability, such
that the classification of an arbitrary pattern x is given by
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Fig. 2: (a) density mixture for class Cy. (b) density mixture for class Cs.

ce p(x,61]Ch) P(C)
f(x) = G i amien 2 Py (3)
Cy Otherwise.

3.1 Analogy with SVMs

SVM’s final classification of an input pattern x; 1is obtained as
f(xi) = sign(3_; yjo; K(x;,%;)), which is in fact the sign of a weighted sum
of the labels y;. Although the sum is accomplished over all N training patterns,
only the terms associated to the SVs, which have non-zero a; (Lagrange Multi-
plier), are in fact computed. If the magnitude of the positive terms (y; = +1)
dominate the sum then the outcome is positive (y; = +1); otherwise, if the nega-
tive terms dominate the sum (y; = —1) then the outcome is negative (y; = —1).
Equation 4 shows SVM’s classification rule with the positive and negative sum-
mation terms separated and label values assigned.

Positive Class Negative Class
Ny N
Fxi) = sign(d>_ o K (xi,%) = Y on K (xi,%1)) (4)
j=1 1=1

The method presented in this paper has an analogous classification rule,
since the general Bayes classification rule of Equation 3 can be rewritten as
f(xi) = sign(p(x;, 01|C1) — ﬁggf;p(xi, 02|C2). Since the likelihoods p(x, 61|C1)
and p(x, 02|C2) are described here as mixtures of Gaussian densities, or kernel
functions centered in GV, the general classification rule can be rewritten as

follows
Positive Class Negative Class
N] N N2
. 1
Fxi) = sign(>_wi K (xi,%;) — N, > wiK (xi, %)) (5)
j=1 =1
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Since for each geometrical vector from one class there is a corresponding
one for the other class, N; = Ny and the two classification rules differ only on
the way the mixing parameters a; and w; are computed. In the experiments
presented in this paper w; = 1 in all trials.

4 Preliminary Results

4.1 Toy problems

In order to illustrate the large margin solution yielded from the proposed method,
experiments were conducted with a toy problem named Half Kernel. Some
results are shown from Figs. 3(a) to 3(c). It is worth noting that our method is
able to construct good solutions without the need of setting any prior parameter.

Fig. 3: Construction of the Large Margin Solution for Half Kernel dataset: (a)
mapping to the Likelihood space; (b) solution obtained from Equation 3; (c)
separation surface in the input space;

4.2 Real-World Data Sets

Experiments were also performed with 4 real-word datasets drawn from the UCI
repository [6]: the Stalog Australian Credit (acr), the Wisconsin breast cancer
(whe), the Pima Indians diabetes (pid) and the Stalog heart disease (hea). All
these datasets had their attributes normalized to mean 0 and standard deviation
1. Twenty different cases were generated for each dataset by shuffling the original
indexes of its elements. Then, each case was split into training (2/3) and test
(1/3) subsets in a stratified manner.

Table 1 shows the characteristics of each dataset along with the results ob-
tained in terms of accuracy (mean) and its standard deviation. The symbols
Ny and N correspond to the number of patterns used for training and test,
respectively and Ny is the total number of attributes. In order to provide some
insight of the effectiveness of our method, the results were compared with the
well-known benchmark of Least-Squares SVMs (LS-SVM) extracted from [7]. In
that study, the regularization and kernel parameters of LS-SVMs were selected
via 10-fold cross-validation. The kernel which reported best results was RBF
kernel.
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Table 1: Results from the UCI datasets

acr wbc pid hea
Niyr/Nie 462/165 456/159 512/157 182/60
Ng 14 9 8 13
LMG 86.6 £2.3 96.6 £1.0 77.6 £2.6  82.8 £5.0

LS-SVM* 87.0 £2.1 96.4 £1.0 76.8 £1.7 84.7 £4.8

5 Conclusion

In SVM’s solution margin maximization and dataset fitting problems are an out-
come of a quadratic programming setting. The method proposed in this paper
considers explicitly the geometrical properties of the dataset and the margin
definition, without aiming at the optimization problem itself. The dataset ge-
ometry in relation to the separation margin is obtained from the structure of a
Gabriel graph, that represents within-class and between-class pattern relations.
The geometric vectors obtained from such a structure are analogous to SVM’s
support vectors and yield a large margin solution, which is obtained directly
with a mixture model of a Bayesian classifier and without the need of setting
any parameter.

The preliminary results obtained via both methods were close, nevertheless,
in contrast with SVMs, our method provides a way to represent an n-dimensional
problem in a R? space, which was named here as “likelihood space”, so that the
problem becomes more representative and less complex. The geometrical solu-
tion presented in this paper uncovers the inherent properties of a large margin
classification problem, since margin patterns are obtained in a more intuitive
way than the usual approach.
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