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Abstract. This work presents an approach allowing for an interactive visualization
of dimensionality reduction outcomes, which is based on an extended view of con-
ventional homotopy. The pairwise functional followed from a simple homotopic
function can be incorporated within a geometrical framework in order to yield a bi-
parametric approach able to combine several kernel matrices. Therefore, the users
can establish the mixture of kernels in an intuitive fashion by only varying two
parameters. Our approach is tested by using kernel alternatives for conventional
methods of spectral dimensionality reduction such as multidimensional scalling,
locally linear embedding and laplacian eigenmaps. The proposed mixture repre-
sents every single dimensionality reduction approach as well as helps users to find
a suitable representation of embedded data.

1 Introduction

Dimensionality reduction (DR) methods are often developed under determined design
parameters and pre-established optimization criterion, and therefore they still lack prop-
erties such as user interaction and controllability. These properties are characteristic of
information visualization procedures. The field of information visualization (IV) is
aimed at developing graphical ways of representing data so that information can be
more usable and intelligible for the user [1, 2]. Then, one can intuit that DR can be
improved by importing some properties of the IV methods.

In this work, with the aim to enable users to provide parameters for data visual-
ization tuning, we propose to combine the effects of different DR approaches through
a homotopy approach for kernels. From the pairwise functional of a conventional ho-
motopy function, an extension able to combine more than two kernels is introduced.
Such an extension consists of a linear combination where the coefficients are related
to the points inside the surface of a polygon. This geometrical approach enables users
to visualize every single method as well asdeformationsor combinations of the meth-
ods. To facilitate the localization of the polygonal surface, the entire surface can be
spanned by varying only two parameters. In other words, kernels are combined through
a weighted sum where coefficients are interactively provided by users within a sim-
ple bi-parametric framework. Our approach is tested by using kernel alternatives for
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conventional methods of spectral dimensionality reduction suchas multidimensional
scaling, locally linear embedding and laplacian eigenmaps [3]. The quality of obtained
embedded data is quantified by a scaled version of the average agreement rate between
K-ary neighborhoods as described in [4]. Provided mixture represents every single di-
mensionality reduction approach as well as helps users to find a suitable representation
of embedded data.

The outline of this paper is as follows: Proposed geometrical homotopy and its
application for kernel-based DR methods is presented in section 2. Section 3 states
the experimental setup for this work. Results and discussion are shown in section 4.
Finally, section 5 draws the conclusions and final remarks.

2 Geometrical homotopy

In topology, the general concept of homotopy refers to the mapping process of a con-
tinuous function onto another one. Such a mapping is done through a continuous defor-
mation of one function into the other [5]. Mathematically, homotopy function for two
topological spaces can be defined as follows: Letf1 and f2 be two continuous functions
associated to the topological spacesX andY, respectively. A homotopy function can be
written as follows:

h : X × [0,1]→ Y (1)

f1, f2 λ 7→ h( f1, f2, λ),

such thath( f1, f2,0) = f1 andh( f1, f2,1) = f2. A simple function fulfilling the homo-
topy conditions can be expressed in the formh( f1, f2, λ) = λ f1 + (1− λ) f2. Such form
is also used for regularization purposes. Graphically, this homotopy approach can be
represented as a line of length 1 drawn between two points so that points represent the
two homotopic functions (See Figure 1(a)). Then, within a visualization framework,
the homotopy parameterλ can be seen as a slider bar.

2.1 Polygonal approach

In this work, from the conventional homotopy concept relying on a pairwise function,
we introduce a simple approach able to combine more than two functions. Since two
homotopic functions can be represented as a line, we can intuitively extend the mixture
given by a pairwise function to polygons for representing more than two functions. By
doing so, each vertex represent a function and the homotopic parameter can span every
pair of functions working as a slider on all the edges singly. Similarly as conventional
homotopy, the length of edges for polygonal approach is 1. Figures 1(b) to 1(d) depict
graphically this idea.

Following the idea of combining functions by varying a parameter, the edges of
the polygons can be stretched to result in a 1D representation that allows to represent
different functions in a pairwise fashion. In other words, the whole set of functions is
spanned by varyingλ around the edges of the polygon -rounding the polygon. Nonethe-
less, since the homotopic function considered here is a binary operator no more than
two functions are simultaneously taken into account within the mixture of functions.
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(a) M = 2 (b) M = 3 (c) M = 4 (d) M = 5

Figure 1: Polygonalapproach to apply a homotopy functional on a set of functions. When
considering more than two functions, the mixture of functions can be done in a pairwise fashion
by varying (“sliding”) the homotopy parameterλ.

Let us consider a mixture ofM functionsgiven by: f =
∑M

m=1αm(λ) fm. So far, by
usingthe first geometrical approach, two coefficientsαm(λ) take valuesλ and1 − λ,
meanwhile the remaining ones are zero. In order to involve the effect of the whole set
of functions (at least more than the two ones located at the vertexes of a specific edge),
we introduce a geometrical homotopy approach using the entire surface rather than the
perimeter only. To this end, every point inside the surface of the polygon represents a set
of coefficients. Therefore, a grid or graph representing the inner points is required. We
propose the use of roll-like grid as shown in Figure 2. Assuming thatλ takes discrete
values, proposed grid can be seen as a dashed concentric line in which the resolution is
given by a constant termε. Such resolution establishes the distance between two con-
tiguous parallel lines. According toε, the resolution levelµℓ with ℓ ∈ 0, . . . ,n is set in
such a way thatµ1 andµn denotes the outer and inner line, respectively. Thus,ε = 1/n,
beingn thenumber of levels. Now, the coefficients are bi-parametricαm(λ, µ) and yield
a mixture in the formf =

∑M
m=1αm(λ, µ) fm. Since maximum length of the edges is 1, a

necessarycondition to satisfy homotopy is that the maximum value of functions is 1, in
case of real functions.

To explain our approach, consider a set ofM kernel matrices{K(1), . . . ,K(M)} rep-
resentingdifferent DR methods. The geometrical homotopy is then aimed at accom-
plishing a mixture in the formK =

∑N
m=1αm(λ, µ)K(m). As explained above, kernel

matricesshould also be normalized so that the maximum entry is 1.

3 Experimental setup

The kernel resulting from the mixture provided here is tested onkernel PCA as ex-
plained in [6]. Kernel PCA, as any dimensional reduction approach, is aimed to embed
a high dimensional data matrixY ∈ RD×N into a low-dimensional, latent data matrix
X ∈ Rd×N, beingd < D. Then,observed data and latent data matrices are formed byN
observations, denoted respectively byyi ∈ R

D andxi ∈ R
d, with i ∈ {1, . . . ,N}.

Kernels for DR: Three kernel approximations for spectral DR methods [3] are con-
sidered. Namely, classical multidimensional scalling (CMDS), locally linear embed-
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Figure 2: Geometrical homotopy for four kernel functions. This approach enables users to com-
binekernels by selecting a point inside the surface. Every point is localized by its corresponding
pair (λ, µ), which is in turn associated with a set ofM coefficients{αm(λ, µ)}Mm=1.

ding (LLE), and graph Laplacian eigenmaps (LE). CMDS kernel is the double centered
distance matrixD ∈ RN×N so

K
(1)
=KCMDS = −

1
2

(IN − 1N1
⊤
N)D(IN − 1N1

⊤
N), (2)

wherethei j entry ofD is given bydi j = ||yi−y j ||
2
2, IN denotes aN-dimensional identity

matrix, and1N is aN-dimensional all ones vector.
A kernel for LLE can be approximated from a quadratic form in terms of the matrix

W holding linear coefficients that sum to 1 and optimally reconstruct observed data.
Define a matrixM ∈ RN×N asM = (IN −W)(IN −W

⊤) andλmax as the largest
eigenvalue ofM . Kernel matrix for LLE is in the form

K
(2)
=KLLE = λmaxIN −M . (3)

Since kernel PCA is a maximization of the high-dimensional covariance represented
by a kernel, LE can be represented as the pseudo-inverse of the graph LaplacianL:

K
(3)
=KLE = L

†, (4)

whereL = D − S, S is a similarity matrix andD = Diag(S1N) is the degree matrix.
All previously mentioned kernels are widely described in [3]. The similarity matrixS

is formed in such a way that the relative bandwidth parameter is estimated keeping the
entropy over neighbor distribution as roughly logK whereK is the given number of
neighbors as explained in [7]. The number of neighbors is established asK = 30.

As well, a RBF kernel is also considered:K
(4)
=KRBF whosei j entry are given by

exp(−0.5||yi − y j ||/σ
2) with σ = 0.1. For all methods, input data is embedded into a 2-

dimensional space, thend = 2. Then, the homotopy approach is performed considering
M = 4 kernels.

Database: Experiments are carried out over an artificial spherical shell withN =
1500 data points andD = 3 dimensions.

Performance measure: To quantify the performance of studied methods, the scaled
version of the average agreement rateRNX(K) introduced in [4] is used, which is ranged
within the interval [0,1]. SinceRNX(K) is calculated at each perplexity value from 2 to
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N − 1, a numerical indicator of the overall performance can be obtained by calculating
its area under the curve (AUC). The AUC assesses the dimension reduction quality at
all scales, with the most appropriate weights.

4 Results and discussion

Given that the mixture presented here is a linear combination, only two kernels (in a
pairwise fashion) are evaluated in case of selecting coefficients from the outer perime-
ter. Doing so user can appreciate the deformation of the resulting embedding from
a method onto that from another method by just varying parameterλ. Indeed, when
selecting coefficients associated with the vertexes, DR process is perfomed under the
effect of a single method. To involve the effect of more than two methods, different
resolution levelsµm should be explored through the polygon surface. So, the proposed
homotopy approach enable users (even those no expert) to interact with the DR out-
comes by intuitively selecting points inside or just in the boundary of the polygonal
grid.

Nonetheless, the mixture of kernels not only allows for representing DR methods
but also may improve the quality of resultant embedded data. In fact, the process of
combining kernels naturally obtained from sliding the homotopy and resolution param-
eters may yield better embedding representations when the effects of DR methods are
adequately blended. Figure 3 shows an instance where the mixture of kernels with
λ = 0.5, ǫ = 0.1, andµ3 reaches better performance in terms of the considered quality
measure. Such performance is associated with the ability to unfold the spherical shell as
seen in Figure 4. Certainly, the mixture of kernels accomplishes a better representation
of embedded data, which resembles the 2D sphere development.
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Figure 3: Results are shown regarding the quality measureRNX(K). Next to legend of each curve,
its corresponding AUC is shown.

5 Conclusion

This work presents an interactive approach to visualize the embedded data resulting
from dimensionality reduction methods. Such approach is based on a so-called geomet-
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(a) LLE (b) CMDS (c) LE

(d) RBF kernel (e) Mixture of
kernels

Figure 4: Embedded data for each considered method. All the methods are performed by using
the kernel representations on kernel PCA. The mixture of kernels is done with the coefficients
corresponding toλ = 0.5,ǫ = 0.1, andµ3.

rical homotopy, which is aimed to facilitate the selection of a DR method that fulfills
the user’s needs. Even non-expert users might easily select a method or combination of
methods by picking up points from a polygonal surface.

As a future work, more kernel representations as well as different mixtures for ho-
motopy will be explored.
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